DOI QR코드

DOI QR Code

Direct Actuation Update Scheme based on Actuator in Wireless Networked Control System

Wireless Networked Control System에서 Actuator 기반 Direct Actuation Update 방법

  • Yeunwoong Kyung (Division of Information & Communication Engineering, Kongju National University) ;
  • Tae-Kook Kim (School of Computer Engineering, Pukyung University ) ;
  • Youngjun Kim (School of Computer Science and Engineering, Kyungnam University)
  • 경연웅 (공주대학교 정보통신공학과 ) ;
  • 김태국 (부경대학교 컴퓨터공학부 ) ;
  • 김영준 (경남대학교 컴퓨터공학부 )
  • Received : 2022.12.13
  • Accepted : 2023.01.15
  • Published : 2023.02.28

Abstract

Age of Information (AoI) has been introduced in wireless networked control systems (WNCSs) to guarantee timely status updates. In addition, as the edge computing (EC) architecture has been deployed in NCS, EC close to sensors can be exploited to collect status updates from sensors and provide control decisions to actuators. However, when lots of sensors simultaneously deliver status updates, EC can be overloaded, which cannot satisfy the AoI requirement. To mitigate this problem, this paper uses actuators with computing capability that can directly receive the status updates from sensors and determine the control decision without the help of EC. To analyze the AoI of the actuation update via EC or directly using actuators, this paper developed an analytic model based on timing diagrams. Extensive simulation results are included to verify the analytic model and to show the AoI with various settings.

최근 Internet of Things (IoT) 기반 Wireless Networked Control System (WNCS)에서 Sensor의 Status Update 및 Actuator로의 Actuation Update 분석을 위해 정보의 신선도를 측정하는 지표인 Age of Information (AoI)가 고려되고 있다. 또한 WNCS에 Edge Computing (EC)이 도입되면서 기존의 Cloud Computing 기반 아키텍처보다 낮은 AoI를 보장할 수 있다. 하지만 Controller가 관리하는 Sensor의 수가 증가하면서 Controller에 부하가 증가하여 AoI 요구사항을 만족시키지 못하는 문제점이 발생하게 되었다. 본 연구에서는 이러한 문제를 해결하기 위해 Actuator의 컴퓨팅 능력을 활용하여 Sensor의 Status Update를 해당 지역의 Actuator가 가용할 때 직접적으로 전송하여 Actuator가 직접 Actuation Update를 수행함으로써 AoI 요구사항을 만족시키고자 한다. 이를 위해 본 연구에서는 AoI 분석을 위한 분석 모델을 제시하였고 시뮬레이션을 통해 제안하는 방법이 기존 방법 대비 AoI를 줄일 수 있음을 보였다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-003)

References

  1. R.K.Manasano, R.J.Rodrigues, E.P.Godoy, and D.Colon, "A New Adaptive Controller in Wireless Networked Control Systems," IEEE Industry Applications Magazine, Vol.25, No.2, pp.12-22, 2019. https://doi.org/10.1109/MIAS.2018.2875184
  2. S.Park and J.Bae, "A Design on the Zone Master Platform based on IIoT Communications for Smart Factory Digital Twin," Journal of The Korea Internet of Things Society, Vol.6, No.4, pp.81-87, 2020. https://doi.org/10.20465/KIOTS.2020.6.4.081
  3. M.Lee "Performance Evaluation of Smoothing Algorithm for Efficient Use of Network Resources in IoT environments," Journal of The Korea Internet of Things Society, Vol.7, No.2, pp.47-53, 2021. https://doi.org/10.20465/KIOTS.2021.7.2.047
  4. M.Lee "Smoothing Algorithm Considering Server Bandwidth and Network Traffic in IoT Environments," Journal of The Korea Internet of Things Society, Vol.8, No.1, pp.53-58, 2022.
  5. W.Liu, P.Popovski, Y.Li, and B.Vucetic, "Wireless Networked Control Systems With Coding-Free Data Transmission for Industrial IoT," IEEE Internet of Things Journal, Vol.7, No.3, pp.1788-1801, 2020. https://doi.org/10.1109/JIOT.2019.2957433
  6. Y.Sun, E.U.Biyikoglu, R.D.Yates, C.E.Koksal, and N.B.Shroff, "Update or Wait: How to Keep Your Data Fresh," IEEE Trans. on Information Theory, Vol.63, No.11, pp.7492-7508, 2017. https://doi.org/10.1109/TIT.2017.2735804
  7. X.Wang, C.Chen, J.He, S.Zhu, and X.Guan, "AoI-Aware Control and Communication Co-Design for Industrial IoT Systems," IEEE Internet of Things Journal, Vol.8, No.10, pp.8464-8473, 2021. https://doi.org/10.1109/JIOT.2020.3046742
  8. J.P.Champati, H.A.Zubaidy, and J.Gross, "Statistical Guarantee Optimization for AoI in Single-Hop and Two-Hop FCFS Systems With Periodic Arrivals," IEEE Trans. on Communications, Vol.69, No.1, pp.365-381, 2021. https://doi.org/10.1109/TCOMM.2020.3027877
  9. W.Dai, H.Nishi, V.Vyatkin, V.Huang, Y.Shi, and X.Guan, "Industrial Edge Computing: Enabling Embedded Intelligence," IEEE Industrial Electronics Magazine, Vol.13, No.4, pp.48-56, 2019. https://doi.org/10.1109/MIE.2019.2943283
  10. D.W.Lee, K.Cho, and S.H.Lee, "Analysis on Smart Factory in IoT Environment," Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.1-5, 2019. https://doi.org/10.20465/KIOTS.2019.5.2.001
  11. Y.Kyung, "Delayed offloading scheme for IoT tasksconsidering opportunistic fog computing environment," Journal of The Korea Internet of Things Society, Vol.6, No.4, pp.89-92, 2020. https://doi.org/10.20465/KIOTS.2020.6.4.089
  12. L.Ravaglia, M.Rusci, D.Nadalini, A.Capotondi, F.Conti, and L.Benini, "A TinyML Platform for On-Device Continual Learning With Quantized Latent Replays," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.11, No.4, pp.789-802, 2021. https://doi.org/10.1109/JETCAS.2021.3121554
  13. R.S.Iborra and A.F.Skarmeta, "TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities," IEEE Circuits and Systems Magazine, Vol.20, No.3, pp.4-18, 2020. https://doi.org/10.1109/MCAS.2020.3005467
  14. H.Ko and Y.Kyung, "Performance Analysis and Optimization of Delayed Offloading System With Opportunistic Fog Node," IEEE Trans. on Vehicular Technology, Vol.71, No.9, pp.10203-10208, 2022.
  15. Q.Kuang, J.Gong, X.Chen, and X.Ma, "Analysis on Computation-Intensive Status Update in Mobile Edge Computing," IEEE Trans. on Vehicular Technology, Vol.69, No.4, pp.4353-4366, 2020. https://doi.org/10.1109/TVT.2020.2974816