References
- Fasihi L, Tartibian B, Eslami R, Fasihi H. Artificial intelligence used to diagnose osteoporosis from risk factors in clinical data and proposing sports protocols. Scientific Reports. 2022;12(1):18330.
- Cootes TF, Taylor CJ, Cooper DH, Graham J. Active Shape Models-Their Training and Application. Computer Vision and Image Understanding. 1995;61(1):38-59. https://doi.org/10.1006/cviu.1995.1004
- Zamora G, Sari-Sarraf H, Long LR. Hierarchical segmentation of vertebrae from x-ray images. Proc SPIE. 2003;5032:631-642.
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, Cham, Springer International Publishing.
- Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(12):2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Long J, Shelhamer E, Darrel T. Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Kim DH, Jeong JG, Kim YJ, Kim KG, Jeon JY. Automated Vertebral Segmentation and Measurement of Vertebral Compression Ratio Based on Deep Learning in X-Ray Images. J Digit Imaging. 2021;34(4):853-861. https://doi.org/10.1007/s10278-021-00471-0
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016;770-778.
- Kim KC, Cho HC, Jang TJ, Choi JM, Seo JK. Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation. Computer Methods and Programs in Biomedicine. 2021;200:105833.
- Abraham N, Khan NM. A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).
- Wu Y, He K. Group Normalization. CoRR abs/1803.08494.
- Maas AL. Rectifier Nonlinearities Improve Neural Network Acoustic Models. 2013.
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15(1):1929-1958.
- Zhao R, Qian B, Zhang X, Li Y, Wei R, Liu Y, Pan Y. Rethinking Dice Loss for Medical Image Segmentation. 2020 IEEE International Conference on Data Mining (ICDM).
- Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980.
- Bertels J, Eelbode T, Berman M, Vandermeulen D, Maes F, Bisschops R, Blaschko M. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice. 2019.
- Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning. Pittsburgh, Pennsylvania, USA, Association for Computing Machinery: 233-240.
- Fard AP, Ferrantelli J, Dupuis A, Mahoor MH. Sagittal Cervical Spine Landmark Point Detection in X-Ray Using Deep Convolutional Neural Networks. IEEE Access. 2022;10:59413-59427. https://doi.org/10.1109/ACCESS.2022.3180028