과제정보
본 연구는 2020년도 한국연구재단 이공분야기초연구사업(2020R1I1A1A01055060)과 중견연구자 지원사업(2022R1A2C1093229)의 지원을 받아 수행된 연구임. 연구에 도움을 주신 Berkeley Coding Academy의 Corey Wade에게 감사드린다.
참고문헌
- Akimoto, Y., Kusaka, H., 2015, A Climatological study of fog in Japan based on event data, Atmos. Res., 11, 200-211 https://doi.org/10.1016/j.atmosres.2014.04.003
- Anber, U., Gentine, P., Wang, S., Sobel, A.H., 2015, Fog and rain in the Amazon, Proc. Natl. Acad. Sci., 112(37), 11473-11477 https://doi.org/10.1073/pnas.1505077112
- Baldocchi, D., Waller, E., 2014, Winter fog is decreasing in the fruit growing region of the central valley of California Geophys. Res. Lett., 41(9), 3251-3256 https://doi.org/10.1002/2014GL060018
- Bartok, A. Bott, M. Gera, 2012, Fog prediction for road traffic safety in a coastal desert region Bound.-Layer Meteorol., 145(3), 485-506 https://doi.org/10.1007/s10546-012-9750-5
- Bang, C. H., Lee, J. W., Hong, S. Y,, 2008, Predictability experiments of fog and visibility in local airports over Korea using the WRF model, J. Korean Soc. Atmos. Environ., 24, 92-101 (in Korean with English abstract)
- Benjamin, S. G., Devenyi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D. S., Schwartz, B. E. Smirnova, T. G, Smith, T. L., Manikin, G. S., 2004, An Hourly assimilation forecast cycle: The RUC. Mon. Weather Rev., 132, 495-518. https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2
- Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O.,Mueller, M., Nielsen, N. W., 2007, Intercomparison of single-column numerical models for the prediction of radiation fog, J. Appl. Meteorol. Climatol., 46, 504-521. https://doi.org/10.1175/JAM2475.1
- Cho, Y. K., Kim, M. O., Kim, B. C., 2000, Sea fog around the Korean peninsula, J. Appl. Meteorol., 39, 2473-2479 https://doi.org/10.1175/1520-0450(2000)039<2473:SFATKP>2.0.CO;2
- Castillo-Boton, C., Casillas-Perez, D., Casanova-Mateo, C., Ghimire, S., Cerro-Prada, E., Gutierrez, P.A., Deo, R.C., Salcedo-Sanz, S., 2022, Machine learning regression and classification methods for fog events prediction, Atmos. Res., 272, 106157
- Chen, T., Guestrin, C. (2016). XGBoost: A scalable tree boosting sytem, KDD '16: Proceedings of the 222nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794
- Fabbian, D., De-Dear, R., Lellyett, S., 2007, Application of artificial neural network forecasts to predict fog at Canberra international airport Weather Forecast., 22(2), 372-381 https://doi.org/10.1175/WAF980.1
- Guerreiro, P.M.P, Soares, P.M.M, Cardoso, R.M., Ramos, A.M., 2020, An analysis of fog in the mainland portuguese international airports Atmos., 11(11), 1239
- Harris, D., Harris, S., 2012, Digital design and computer architecture (2nd ed.). San Francisco, Calif.: Morgan Kaufmann. p. 129. ISBN 978-0-12-394424-5.
- Heo, K. Y., Ha, K. J., Mahrt, L., Shim, J. S., 2010, Comparison of advection and steam fogs: from direct observation over the sea, Atmos. Res., 98, 426-437 https://doi.org/10.1016/j.atmosres.2010.08.004
- Huang, D.-S., 2004, A constructive approach for finding arbitrary roots of polynomials by neural networks, IEEE Trans. Neural Netw., 15(2), 477-491 https://doi.org/10.1109/TNN.2004.824424
- Huang, D.-S., Ip, H.H., Chi, Z., 2004; A neural root finder of polynomials based on root moments, Neural Comput., 16(8), 1721-1762 https://doi.org/10.1162/089976604774201668
- Kim, E.-J., Lee, K.-Y., Park, C., Lee, S.-H., 2021, A study on fog formation and visibility estimation in waterfront area using meteorological model, J. environ. Sci. Int., 30(4), 305-320 (in Korean with English abstract) https://doi.org/10.5322/JESI.2021.30.4.305
- Kim, W. H., Yum, S. S., 2015, Development and validation of the coupled system of Unified Model (UM) and PArameterized FOG (PAFOG), Atmos., 25, 149-154 (in Korean with English abstract) https://doi.org/10.14191/Atmos.2015.25.1.149
- Kim, Y. K., Kim, H., Seo, J. W., An, H. Y., Choi, Y. H., 2017, Meteorological analysis of the sea fog in winter season on Gyeonggi bay, Yellow sea: a case study for the 106-vehicle pileup on February 11, 2015. J. Coast. Res., 79, 124-128 (in Korean with English abstract) https://doi.org/10.2112/SI79-026.1
- Kim, M.W., R. K.-Y. Choi, Y. S. Lee, J. Choi, D. Y. Kim, K. H. Kim, 2021, Development of deep-learning based present weather. Journal of the Korean Data And Information Science Society, 32(5), 1007-1021 (in Korean with English abstract) https://doi.org/10.7465/jkdi.2021.32.5.1007
- Kuncheva, L. I., Rodgriguez, J. J., 2012, A weighted voting frameowrk fro classifiers ensembles, Knowledge and Information Systems, 38, 259-275. https://doi.org/10.1007/s10115-012-0586-6
- Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V. Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., Fessehaye, G.M., 2012, Fessehaye Fog as a fresh-water resource: overview and perspectives AMBIO, 41, 221-234 https://doi.org/10.1007/s13280-012-0247-8
- Knapp, D. I., 1996, Development of a surface visibility algorithm for worldwide use with mesoscale model output. In conference of weather analysis and forecasting, Amer. Meteor. Soc., 15, 83-86.
- KoROAD, 2020, Statistical analysis of traffic accidents, Report, No. 2020-0202-006, Korea Road traffic authority, Wonju, Korea
- Lee, Y.-S., Choi, R. K.-Y., Kim, K.-H., Pa?, S. -H., Nam, H.-J. and Kim, S.-B., 2019, Improvement of automatic present weather observation with in situ visibility and humidity measurements, Atmos. Korean. Meteorol. Soc.m 29(4), 439-450 (in Korean with English abstract)
- Li, B., Du, J., Zhang, X.-P., 2016a, Feature extraction using maximum nonparametric margin projection, Neurocomputing, 188, 225-232 https://doi.org/10.1016/j.neucom.2014.11.105
- Li, B., Lei, L., Zhang, X.-P., 2016b, Constrained discriminant neighborhood embedding for high dimensional data feature extraction, Neurocomputing, 173, 137-144 https://doi.org/10.1016/j.neucom.2015.01.099
- Li, B. et al., 2019, Robust dimensionality reduction via feature space to feature space distance metric learning, IEEE Trans. Neural Netw., 112, 1-14 https://doi.org/10.1016/j.neunet.2019.01.001
- Mun, S. H., Lee, S. H., 2013, A Study on the change of fog frequency and duration hours in South Korea, J. Clim. Res. inst., 8(2), 93-104. https://doi.org/10.14383/cri.2013.8.2.93
- Miao, K.-C., Han, T.-T., Yao, Y.-Q., Lu, H., Chen, P., Wang, B., Zhang, J., 2020, Application of LSTM for short term fog forecasting based on meteorological elements, Neurocomputing, 408, 285-291 https://doi.org/10.1016/j.neucom.2019.12.129
- Montecinos, S., Carvajal, D., Cereceda, P., Concha, M.,2018, Collection efficiency of fog events Atmos. Res., 209,163-169 https://doi.org/10.1016/j.atmosres.2018.04.004
- Park, J. S., Lim, Y. K., Kim, K. R., Cho, C. B., Jang, J. Y., Kang, M. S., Kim, B. J., 2015, Atmospheric characteristics of fog incidents at the Nakdong river: Case study in Gangjeong-Goryung weir, J. Environ. Sci. Int., 24, 657-670 (in Korean with English abstract) https://doi.org/10.5322/JESI.2015.24.5.657
- Peng, Y., Abdel-Aty, M., Lee, J., Zou, Y., 2018, Analysis of the impact of fog-related reduced visibility on traffic parameters J. Transp. Eng. Part A, 144(2), Article 04017077
- Rashmi K. V., Gilad-Bachrach, R., 2015, DART: Dropouts Meet Multiple Additive Regression Trees in Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, CA, USA. JMLR: W&CP vol.38
- Shim, H. N., Lee, Y. H., 2017, Influence of local wind on occurrence of fog at inland area, Atmos., 27, 213-224 (in Korean with English abstract)
- Shrestha, S., Moore, G.A., Peel, M.C., 2018, Trends in winter fog events in the Terai region of Nepal Agric. Forest Meteorol., 259, 118-130 https://doi.org/10.1016/j.agrformet.2018.04.018
- Sohn, 2010, Binary forecast model for fog occurrence over South Korea in the sprinttime, J. Korean Data Soc., 12(2), 949-960
- Tardif, R., 2007, The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study, Pure Appl. Geophys., 164, 1221-1240 https://doi.org/10.1007/s00024-007-0216-5
- Tardif, R., Rasmussen, M., 2007, Event-based climatology and typology of fog in the New York city region, J. Appl. Meteorol. Climatol., 46, 1141-1168. https://doi.org/10.1175/JAM2516.1
- Wu, Y., Abdel-Aty, M., Lee, J., 2018, Crash risk analysis during fog conditions using real-time traffic data Accid. Anal. Prev., 114, 4-11 https://doi.org/10.1016/j.aap.2017.05.004
- Wantuch, F., 2001, Visibility and fog forecasting based on decision tree method, Idojaras, 105, 29-38.
- Zhu, B., 2019, Short_Term Photovoltaic Power Output Precition Based on k-Fold Cross-Validation and an Ensemble Model, " MIDPI Ergies