참고문헌
- Abu-Shamah, A. and Allouzi, R. (2020), "Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending", Steel Compos. Struct., 37(5), 533-549. http://dx.doi.org/10.12989/scs.2020.37.5.533.
- Algarni, M., Choi, Y. and Bai, Y. (2017), "A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718", Int. J. Fatigue, 96, 162-177. https://doi.org/10.1016/j.ijfatigue.2016.11.033.
- Bai, Y. and Wierzbicki, T. (2015), "A comparative study of three groups of ductile fracture loci in the 3D space", Eng. Fract. Mech., 135, 147-167. https://doi.org/10.1016/j.engfracmech.2014.12.023.
- Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46, 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
- Corona, E. and Reedlunn, B. (2013), "A Review of macroscopic ductile failure criteria", SANDIA REPORT, 7989.
- Daghfas, O., Znaidi, A., Gahbiche, A. and Nasri, R. (2018), "Identification of the anisotropic behavior of an aluminum alloy subjected to simple and cyclic shear tests", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233, 911-927. https://doi.org/10.1177/0954406218762947
- Ding, F.X., Fu, Q., Wen, B., Zhou Q.S. and Liu, X.M. (2018), "Behavior of circular concrete-filled steel tubular columns under pure torsion", Steel Compos. Struct., 26(4), 501-511. http://dx.doi.org/10.12989/scs.2018.26.4.501.
- Lee, K.L., Chang. K.H. and Pan, W.F. (2016), "Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending", Struct. Eng. Mech., 60(3), 387-404. https://doi.org/10.12989/sem.2016.60.3.387.
- Janus-Galkiewicz, U. and Galkiewicz, J. (2021), "Analysis of the failure process of elements subjected to monotonic and cyclic loading using the wierzbicki-bai model", Materials, 14, 6265. https://doi.org/10.3390/ma14216265.
- Javidan, F., Heidarpour, A., Zhao, X.L. and Al-Mahaidi, R. (2018), "Steel and Composite Structures." Steel Compos. Struct., 27(2), 229-242. http://dx.doi.org/10.12989/scs.2018.27.2.229.
- Keim, V., Nonn, A. and Munstermann, S. (2019), "Application of the modified Bai-Wierzbicki model for the prediction of ductile fracture in pipelines", Int. J. of Pressure Vessels and Piping, 171, 104-116. https://doi.org/10.1016/j.ijpvp.2019.02.010.
- Khan, A.S., Huang, S. (1995), Continuum Theory of Plasticity, iley,
- Liu, J., Yan, S. and Zhao, X. (2018), "Simulation of fracture of a tubular X-joint using a shear-modified Gurson-Tvergaard-Needleman model", Thin Wall. Struct., 132, 120-135. https://doi.org/10.1016/j.tws.2018.07.054.
- Nayebi, A., (2010), "Influence of continuum damage mechanics on the Bree's diagram of a closed end tube", Mater. Des., 31, 296-305. https://doi.org/10.1016/j.matdes.2009.06.014.
- Needleman, A. and Tvergaard, V. (1984), "An analysis of ductile rupture in notched bars", J. Mech. Phys. Solids, 32, 461-490. https://doi.org/10.1016/0022-5096(84)90031-0.
- Nielsen, K.L. and Tvergaard, V. (2009), "Effect of a shear modified gurson model on damage development in a fsw tensile specimen", Int. J. Solids Struct., 46, 587-601. https://doi.org/10.1016/j.ijsolstr.2008.09.011.
- Rahal, K.N. (2021), "A unified approach to shear and torsion in reinforced concrete", Struct. Eng. Mech., 77(5), 691-703. http://dx.doi.org/10.12989/sem.2021.77.5.691.
- Rovolic, R. and Tipton, S.M., "Multiaxial cyclic ratcheting in coiled tubing-Part 1: theoretical modeling", ASME J. Eng. Mater. Tech., 122, 157-161. https://doi.org/10.1115/1.482781.
- Surmiri, A., Rokhgireh, H., Nayebi, A. and Varvani-Farahani, A. (2020), "Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading", Struct. Eng. Mech., 75(1), 101-108. http://dx.doi.org/10.12989/sem.2020.75.1.101.
- Toh, W., Tan, L.B., Tse, K.M., Raju, K., Lee, H.P. and Tan, V.B.C. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effects of gravity", Steel Compos. Struct., 26(1), 55-66. http://dx.doi.org/10.12989/scs.2018.26.1.055.
- Torabi, A.R., Saboori, B. and Kamjoo, M.R. (2020), "Out-of-plane ductile failure of notch: evaluation of equivalent material concept", Struct. Eng. Mech., 75, 559-569. http://dx.doi.org/10.12989/sem.2020.75.5.559.
- Varvani-Farahani, A., Nayebi, A. (2018), "Ratcheting in pressurized pipes and equipment: A review on affecting parameters, modelling, safety codes, and challenges", Fatigue Fract. Eng. Mater. Struct., 41(3), 503-538. https://doi.org/10.1111/ffe.12775.
- Vershinin, V.V. (2017), "A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence", Int. J. Solids Struct., 126-127, 150-162. https://doi.org/10.1016/j.ijsolstr.2017.08.001.
- Wadi, A., Petterson, L. and Karoumi, R. (2018), "FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert", Steel Compos. Struct., 27(2) 217-227. http://dx.doi.org/10.12989/scs.2018.27.2.217.
- Wellman, G.W. (2012), "A simple approach to modeling ductile failure", Tech. Rept. SAND2012-1343. Sandia National Laboratories.
- Wierzbicki, T. and Bai, Y. (2015), "A comparative study of three groups of ductile fracture loci in the 3D space", Eng. Fract. Mech., 135, 147-167. https://doi.org/10.1016/j.engfracmech.2014.12.023.
- Wierzbicki, T., Bao, Y., Lee, Y.-W. and Bai, Y., (2005), "Calibration and evaluation of seven fracture models", Int. J. Mech. Sci., 47, 719-743. https://doi.org/10.1016/j.ijmecsci.2005.03.003.
- Yazdani, H. and Nayebi, A., (2013), "Continuum damage mechanics analysis of thin-walled tube under cyclic bending and internal constant pressure", Int. J. Appl. Mech., 5, 1350038. https://doi.org/10.1142/S1758825113500385.