DOI QR코드

DOI QR Code

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Received : 2021.06.01
  • Accepted : 2023.04.10
  • Published : 2023.04.25

Abstract

The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Keywords

References

  1. Abu-Shamah, A. and Allouzi, R. (2020), "Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending", Steel Compos. Struct., 37(5), 533-549. http://dx.doi.org/10.12989/scs.2020.37.5.533.
  2. Algarni, M., Choi, Y. and Bai, Y. (2017), "A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718", Int. J. Fatigue, 96, 162-177. https://doi.org/10.1016/j.ijfatigue.2016.11.033.
  3. Bai, Y. and Wierzbicki, T. (2015), "A comparative study of three groups of ductile fracture loci in the 3D space", Eng. Fract. Mech., 135, 147-167. https://doi.org/10.1016/j.engfracmech.2014.12.023.
  4. Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46, 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
  5. Corona, E. and Reedlunn, B. (2013), "A Review of macroscopic ductile failure criteria", SANDIA REPORT, 7989.
  6. Daghfas, O., Znaidi, A., Gahbiche, A. and Nasri, R. (2018), "Identification of the anisotropic behavior of an aluminum alloy subjected to simple and cyclic shear tests", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233, 911-927. https://doi.org/10.1177/0954406218762947
  7. Ding, F.X., Fu, Q., Wen, B., Zhou Q.S. and Liu, X.M. (2018), "Behavior of circular concrete-filled steel tubular columns under pure torsion", Steel Compos. Struct., 26(4), 501-511. http://dx.doi.org/10.12989/scs.2018.26.4.501.
  8. Lee, K.L., Chang. K.H. and Pan, W.F. (2016), "Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending", Struct. Eng. Mech., 60(3), 387-404. https://doi.org/10.12989/sem.2016.60.3.387.
  9. Janus-Galkiewicz, U. and Galkiewicz, J. (2021), "Analysis of the failure process of elements subjected to monotonic and cyclic loading using the wierzbicki-bai model", Materials, 14, 6265. https://doi.org/10.3390/ma14216265.
  10. Javidan, F., Heidarpour, A., Zhao, X.L. and Al-Mahaidi, R. (2018), "Steel and Composite Structures." Steel Compos. Struct., 27(2), 229-242. http://dx.doi.org/10.12989/scs.2018.27.2.229.
  11. Keim, V., Nonn, A. and Munstermann, S. (2019), "Application of the modified Bai-Wierzbicki model for the prediction of ductile fracture in pipelines", Int. J. of Pressure Vessels and Piping, 171, 104-116. https://doi.org/10.1016/j.ijpvp.2019.02.010.
  12. Khan, A.S., Huang, S. (1995), Continuum Theory of Plasticity, iley,
  13. Liu, J., Yan, S. and Zhao, X. (2018), "Simulation of fracture of a tubular X-joint using a shear-modified Gurson-Tvergaard-Needleman model", Thin Wall. Struct., 132, 120-135. https://doi.org/10.1016/j.tws.2018.07.054.
  14. Nayebi, A., (2010), "Influence of continuum damage mechanics on the Bree's diagram of a closed end tube", Mater. Des., 31, 296-305. https://doi.org/10.1016/j.matdes.2009.06.014.
  15. Needleman, A. and Tvergaard, V. (1984), "An analysis of ductile rupture in notched bars", J. Mech. Phys. Solids, 32, 461-490. https://doi.org/10.1016/0022-5096(84)90031-0.
  16. Nielsen, K.L. and Tvergaard, V. (2009), "Effect of a shear modified gurson model on damage development in a fsw tensile specimen", Int. J. Solids Struct., 46, 587-601. https://doi.org/10.1016/j.ijsolstr.2008.09.011.
  17. Rahal, K.N. (2021), "A unified approach to shear and torsion in reinforced concrete", Struct. Eng. Mech., 77(5), 691-703. http://dx.doi.org/10.12989/sem.2021.77.5.691.
  18. Rovolic, R. and Tipton, S.M., "Multiaxial cyclic ratcheting in coiled tubing-Part 1: theoretical modeling", ASME J. Eng. Mater. Tech., 122, 157-161. https://doi.org/10.1115/1.482781.
  19. Surmiri, A., Rokhgireh, H., Nayebi, A. and Varvani-Farahani, A. (2020), "Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading", Struct. Eng. Mech., 75(1), 101-108. http://dx.doi.org/10.12989/sem.2020.75.1.101.
  20. Toh, W., Tan, L.B., Tse, K.M., Raju, K., Lee, H.P. and Tan, V.B.C. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effects of gravity", Steel Compos. Struct., 26(1), 55-66. http://dx.doi.org/10.12989/scs.2018.26.1.055.
  21. Torabi, A.R., Saboori, B. and Kamjoo, M.R. (2020), "Out-of-plane ductile failure of notch: evaluation of equivalent material concept", Struct. Eng. Mech., 75, 559-569. http://dx.doi.org/10.12989/sem.2020.75.5.559.
  22. Varvani-Farahani, A., Nayebi, A. (2018), "Ratcheting in pressurized pipes and equipment: A review on affecting parameters, modelling, safety codes, and challenges", Fatigue Fract. Eng. Mater. Struct., 41(3), 503-538. https://doi.org/10.1111/ffe.12775.
  23. Vershinin, V.V. (2017), "A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence", Int. J. Solids Struct., 126-127, 150-162. https://doi.org/10.1016/j.ijsolstr.2017.08.001.
  24. Wadi, A., Petterson, L. and Karoumi, R. (2018), "FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert", Steel Compos. Struct., 27(2) 217-227. http://dx.doi.org/10.12989/scs.2018.27.2.217.
  25. Wellman, G.W. (2012), "A simple approach to modeling ductile failure", Tech. Rept. SAND2012-1343. Sandia National Laboratories.
  26. Wierzbicki, T. and Bai, Y. (2015), "A comparative study of three groups of ductile fracture loci in the 3D space", Eng. Fract. Mech., 135, 147-167. https://doi.org/10.1016/j.engfracmech.2014.12.023.
  27. Wierzbicki, T., Bao, Y., Lee, Y.-W. and Bai, Y., (2005), "Calibration and evaluation of seven fracture models", Int. J. Mech. Sci., 47, 719-743. https://doi.org/10.1016/j.ijmecsci.2005.03.003.
  28. Yazdani, H. and Nayebi, A., (2013), "Continuum damage mechanics analysis of thin-walled tube under cyclic bending and internal constant pressure", Int. J. Appl. Mech., 5, 1350038. https://doi.org/10.1142/S1758825113500385.