DOI QR코드

DOI QR Code

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu (Department of Civil Engineering, Tsinghua University) ;
  • Xianglin Yu (Department of Civil Engineering, Tsinghua University) ;
  • Yongjiu Shi (Department of Civil Engineering, Tsinghua University) ;
  • Yonglei Xu (Department of Civil Engineering, Tsinghua University) ;
  • Huiyong Ban (Department of Civil Engineering, Tsinghua University)
  • 투고 : 2022.01.01
  • 심사 : 2023.03.29
  • 발행 : 2023.04.25

초록

The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

키워드

과제정보

The authors sincerely acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 52078276 and 51890903). Special gratitude is also extended to the pertinent technicians and experts from the Civil Engineering Laboratory of Huaqiao University for providing essential assistance during the column fire tests. The authors also highly appreciate Wuhan Iron and Steel Company for their great efforts in manufacturing the fire-resistant steels and processing the test specimens. Any opinions, discoveries and conclusions or recommendations in this paper are those of the authors and do not necessarily represent the viewpoints of the National Natural Science Foundation.

참고문헌

  1. ANSI/AISC 360 (2016), Specification for structural steel buildings, AISC; Chicago, USA.
  2. AS 4100 (2020), Steel Structures, Australian Standard; Sydney, Australia.
  3. ASCE (1992), ASCE Manuals and Reports on Engineering Practice No.78, Structural Fire Protection; New York, USA.
  4. ASTM A588/A588M (2015), Standard specification for high-strength low-alloy structural steel, up to 50 ksi [345 MPa] minimm yield point, with atmospheric corrosion resistance, ASTM; West Conshohocken, United States.
  5. BS 5950-8 (2003), Structural use of steelwork in building - Part 8: Code of practice for fire resistant design, BSI; London, UK.
  6. BS EN 1363-1 (2012), Fire resistance tests - Part 1: general requirements, BSI; London, UK.
  7. BS EN 1991-1-2 (2002), Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire, BSI; London, UK.
  8. BS EN 1993-1-1 (2015), Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, BSI; London, UK.
  9. BS EN 1993-1-2 (2005), Eurocode 3: Design of steel structures - Part 1-2: General rules - structural fire design, BSI; London, UK.
  10. Choe, L., Agarwal, A. and Varma, A. (2016), "Steel columns subject to thermal gradients from fire loading: experimental evaluation", J. Struct. Eng., 142(7), 04016037. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001500.
  11. Ding, J., Li, G. and Sakumoto, Y. (2004), "Parametric studies on fire resistance of fire-resistant steel members", J. Constr. Steel Res., 60, 1007-1027. https://doi.org/10.1016/j.jcsr.2003.09.007.
  12. Ding, R., Fan, S., Chen, G., Li, C., Du, E. and Liu C. (2019), "Fire resistance design method for restrained stainless steel H-section columns under axial compression", Fire Saf. J., 108, 102837. https://doi.org/10.1016/j.firesaf.2019.102837.
  13. Fan, S., Li, Y., Li, Z., Liu, M. and Han Y. (2017), "Experimental investigation of fire resistance of axially compressed stainless steel columns with constraints", Thin Wall. Struct., 120, 46-59. https://doi.org/10.1016/j.tws.2017.08.020.
  14. Fan, S., Liu, M., Sun, W., Guo, Y. and Han, Y. (2018), "Experimental investigation of eccentrically compressed stainless steel columns with constraints in fire", Fire Saf. J., 99, 49-62. https://doi.org/10.1016/j.firesaf.2018.06.005.
  15. Fan, S., Zhang, L., Sun, W., Ding, X. and Liu, M. (2016), "Numerical investigation on fire resistance of stainless steel columns with square hollow section under axial compression", Thin Wall. Struct., 98, 185-195. https://doi.org/10.1016/j.tws.2015.09.010.
  16. GB 50017 (2017), Standard for design of steel structures, National Standard of P. R. China; Beijing, China. (in Chinese)
  17. GB 50661 (2011), Code for welding of steel structures, National Standard of P. R. China; Beijing, China. (in Chinese)
  18. GB 51249 (2017), Code for fire safety of steel structures in buildings, National Standard of P. R. China; Beijing, China. (in Chinese)
  19. GB/T 19879 (2015), Steel plate for building structure, National Standard of P. R. China; Beijing, China. (in Chinese)
  20. GB/T 228.2 (2015), Metallic materials-Tensile testing - Part 2: method of test at elevated temperature, National Standard of P. R. China; Beijing, China. (in Chinese)
  21. GB/T 28415 (2012), Fire-resistant structural steel plate and strip, National Standard of P. R. China; Beijing, China. (in Chinese)
  22. GB/T 9978.1 (2008), Fire-resistance tests-Elements for building construction - Part 1: general requirements, National Standard of P. R. China; Beijing, China. (in Chinese)
  23. GB/T 9978.7 (2008), Fire-resistance tests-Elements for building construction - Part 7: Specific requirements for columns, National Standard of P. R. China; Beijing, China. (in Chinese)
  24. Giraldo, O. and Dario, J. (2014), "Axially restrained beam-column with initial imperfections and nonlinear end connections subject to high temperatures", J. Eng. Mech., 140(4), 04014003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000710.
  25. Glassman, J., Gomez, A., Garlock, M. and Ricles, J. (2020), "Mechanical properties of weathering steels at elevated temperatures", J. Constr. Steel Res., 168, 105996. https://doi.org/10.1016/j.jcsr.2020.105996.
  26. Han, L., Chen, F., Liao, F., Tao, Z. and Uy, B. (2013), "Fire performance of concrete filled stainless steel tubular columns", Eng. Struct., 56, 165-181. https://doi.org/10.1016/j.engstruct.2013.05.005.
  27. Han, L., Song, T. and Zhou, K. (2017), Fire safety design theory of steel-concrete composite structures (Second Edition), Science Press, Beijing, China. (in Chinese)
  28. Hozjan, T., Planinc, I., Saje, M. and Srpcic, S. (2008), "Buckling of restrained steel columns due to fire conditions", Steel Compos. Struct., Int. J., 8(2), 159-178. https://doi.org/10.12989/scs.2008.8.2.159.
  29. ISO 6892-2 (2018), Metallic materials-Tensile testing - Part 2: method of test at elevated temperature, International Standard; Geneva, Switzerland.
  30. ISO 834-1 (2014), Fire-resistance tests-Elements for building construction - Part 1: general requirements, International Standard; Geneva, Switzerland.
  31. JIS G 3106 (1995), Rolled steels for welded structures, Japanese Standards Association; Tokyo, Japan.
  32. Kelly, F. and Sha, W. (1999), "A comparison of the mechanical properties of fire-resistant and S275 structural steels", J. Constr. Steel Res., 50, 223-233. https://doi.org/10.1016/S0143-974X(98)00252-1.
  33. Kruzic, J.J., Schneibel, J.H. and Ritchie, R.O. (2005), "Ambient-to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure", Metall. Mater. Trans. A., 36(9), 2393-2402. https://doi.org/10.1007/s11661-005-0112-5.
  34. Kumar, W., Sharma, U.K. and Shome, M. (2021), "Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures", J. Constr. Steel Res., 181, 106615. https://doi.org/10.1016/j.jcsr.2021.106615.
  35. Kwon, I. and Kwon, Y. (2014), "Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures", Steel Compos. Struct., Int. J., 17(1), 105-121. https://doi.org/10.12989/scs.2014.17.1.105.
  36. Li, G., Ding, J. and Sakumoto, Y. (2005), "A practical approach for fire safety design of fire-resistant steel members", Steel Compos. Struct., Int. J., 5(1), 71-86. https://doi.org/10.12989/scs.2005.5.1.071.
  37. Li, G., Wang, P. and Wang Y. (2010), "Behaviour and design of restrained steel column in fire, part I: fire test", J. Constr. Steel Res., 66, 1138-1147. https://doi.org/10.1016/j.jcsr.2010.03.017.
  38. Liu, M., Fan, S., Sun, W., Ding, R. and Zhu, T. (2018), "Fire-resistant design of eccentrically compressed stainless steel columns with constraints", Fire Saf. J., 100, 1-19. https://doi.org/10.1016/j.firesaf.2018.06.006.
  39. Mehan, R.L. and Bolon R.B. (1979), "Interaction between silicon carbide and a nickel-based superalloy at elevated temperatures", J. Mater. Sci., 14(10), 2471-2481. https://doi.org/10.1007/BF00737038.
  40. Outinen, J. and Makelainen, P. (2004), "Mechanical properties of structural steel at elevated temperatures and after cooling down", Fire Mater., 28(2-4), 237-251. https://doi.org/10.1002/fam.849.
  41. Paul V.T., Saroja, S. and Vijayalakshmi, M. (2008), "Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures", J. Nucl. Mater., 378(3), 273-281. https://doi.org/10.1016/j.jnucmat.2008.06.033.
  42. Sakumoto, Y. (1999), "Research on new fire-protection materials and fire-safe design", J. Struct. Eng., 125(12), 1415-1422. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1415).
  43. Sakumoto, Y., Okada, T., Yoshida, M. and Tasaka, S. (1994), "Fire resistance of concrete-filled, fire-resistant steel-tube columns", J. Mater. Civ. Eng., 6(2), 169-184. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(169).
  44. Sakumoto, Y., Yamaguchi, T., Ohashi, M. and Saito, H. (1992), "High-temperature properties of fire-resistant steel for buildings", J. Struct. Eng., 118(2), 392-407. https://doi.org/10.1061/%28ASCE%290733-9445%281992%29118%3A2%28392%29.
  45. Sakumoto, Y., Yamaguchi, T., Okada, T., Yoshida, M., Tasaka, S. and Saito, H. (1994), "Fire resistance of fire-resistant steel columns", J. Struct. Eng., 120(4), 1103-1121. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1103).
  46. Shahria Alam, M., Muntasir Billah, A., Quayyum, S., Ashraf, M., Rafi, A. and Rteil, A. (2013), "Fire performance curves for unprotected HSS steel columns", Steel Compos. Struct., Int. J., 15(6), 705-724. https://doi.org/10.12989/scs.2013.15.6.705.
  47. Shi, Y., Tu, C., Wu, Y., Liu, D., Meng, L. and Ban, H. (2021), "Numerical investigations of fire-resistant steel welded I-section columns under elevated temperatures", J. Constr. Steel Res., 177, 106464. https://doi.org/10.1016/j.jcsr.2020.106464.
  48. Tan, Q., Gardner, L., Han, L. and Song, T. (2019), "Fire performance of steel reinforced concrete-filled stainless steel tubular (CFSST) columns with square cross-sections", Thin Wall. Struct., 143, 106197. https://doi.org/10.1016/j.tws.2019.106197.
  49. Tao, Z., Ghannam, M., Song, T. and Han, L. (2016), "Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire", J. Constr. Steel Res., 118, 120-134. https://doi.org/10.1016/j.jcsr.2015.11.003.
  50. Wu, Y., Fan, S., He, B., Li, C. and Zhou, H. (2021), "Experimental study and numerical simulation analysis of the fire resistance of high-strength steel columns with rectangular sections under axial compression", Fire Saf. J., 121, 103266. https://doi.org/10.1016/j.firesaf.2020.103266.
  51. Wu, Y., Fan, S., He, B., Liu, M. and Zhou, H. (2021), "Research on the fire resistance design of high-strength steel hollow columns under axial compression", Eng. Struct., 234, 111943. https://doi.org/10.1016/j.engstruct.2021.111943.
  52. Xing, Z., Zhao, O., Kucukler, M. and Gardner, L. (2021), "Testing of stainless steel I-section columns in fire", Eng. Struct., 227, 111320. https://doi.org/10.1016/j.engstruct.2020.111320.
  53. Yang, K. and Yu, Z. (2013), "Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature", Steel Compos. Struct., Int. J., 15(2), 163-173. https://doi.org/10.12989/scs.2013.15.2.163.
  54. Yang, K., Chen, S., Lin, C. and Lee, H. (2005), "Experimental study on local buckling of fire-resisting steel columns under fire load", J. Constr. Steel Res., 61(4), 553-565. https://doi.org/10.1016/j.jcsr.2004.07.001.
  55. Yang, K., Lee, H. and Chan, O. (2005), "Experimental study on ultimate strength of H-shaped fire-resistant steel columns under fire load", Proceedings of Structures Congress 2005, ASCE, New York, USA, April. https://doi.org/10.1061/40753(171)56.
  56. Yang, K., Lee, H. and Chan, O. (2006), "Experimental study of fire-resistant steel H-columns at elevated temperature", J. Constr. Steel Res., 62(6), 544-553. https://doi.org/10.1016/j.jcsr.2005.09.008.
  57. Zhou, K. and Han, L. (2018), "Experimental performance of concrete-encased CFST columns subject to full-range fire including heating and cooling", Eng. Struct., 165, 331-348. https://doi.org/10.1016/j.engstruct.2018.03.042.
  58. Zhou, K. and Han, L. (2019), "Modelling the behaviour of concrete-encased concrete-filled steel tube (CFST) columns subject to full-range fire", Eng. Struct., 183, 265-280. https://doi.org/10.1016/j.engstruct.2018.12.100.