DOI QR코드

DOI QR Code

A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces

  • Zheng Tan (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Wei-hui Zhong (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Bao Meng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Shi-chao Duan (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Hong-chen Wang (China Northwest Architecture Design and Research Institute Co., Ltd) ;
  • Xing-You Yao (Jiangxi Province Key Laboratory of Hydraulic and Civil Engineering Infrastructure Security, Nanchang Institute of Technology) ;
  • Yu-hui Zheng (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2022.10.19
  • Accepted : 2023.02.13
  • Published : 2023.04.25

Abstract

The bearing capacities resisted by the two-bay beams of multi-story planar frames with unequal spans under column removal scenarios differ considerably owing to the asymmetric stress on the left and right beams connected to the failed column and cause the potential for beams with larger span-to-depth ratios to be unable to exert effectively, which is disadvantageous for resisting the vertical load in unequal-span frame structures. To address this problem, the structural measure of adding braces to the weak bays of multi-story unequal-span frames was proposed, with the objective of achieving a coordinated stress state in two-bay beams with unequal spans, thereby improving the collapse resistance of unequal-span frame structures. Before conducting the numerical simulation, the modeling methods were verified by previous experimental results of two multi-story planar frames with and without steel braces. Thereafter, the effects of the tensile and compressive braces on the collapse behavior of the frame structures were elucidated. Then, based on the mechanical action laws of the braces throughout the collapse process, a detailed design method for improving the collapse resistance of unequal-span frame structures was proposed. Finally, the proposed design method was verified by using sufficient example models, and the results demonstrated that the design method has good application prospects and high practical value.

Keywords

Acknowledgement

The research was supported by the National Natural Science Foundation of China (Nos. 52178162 and 51908449). The authors also gratefully acknowledge the financial support provided by the scientific research plan projects of Shaanxi Education Department (Nos. 20JY033 and 20JK0713), Key Research and Development Project of Shaanxi Province (No. 2022SF-121), and Natural Science Basic Research Program of Shaanxi Province (No. 2022JQ-381)

References

  1. Alashker, Y., El-Tawil S. and Sadek, F. (2010), "Progressive collapse resistance of steel-concrete composite floors", J. Struct. Eng., 136(10), 1187-1196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000230.
  2. Alireza, K. and Hossein, O. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
  3. Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T. and Al-Salloum. Y. (2020), "Investigation of different steel intermediate moment frame connections under column-loss scenario", Thin-Wall. Struct., 154, 106875. https://doi.org/10.1016/j.tws.2020.106875.
  4. Asgarian, B. and Rezvani, F.H. (2012), "Progressive collapse analysis of concentrically braced frames through EPCA algorithm", J. Constr. Steel. Res., 70, 127-136. https://doi.org/10.1016/j.jcsr.2011.10.022.
  5. ANSI/AISC 358-10 (2014), Prequalified connections for special and intermediate steel moment frames for seismic applications, Chicago: AISC.
  6. Chen, S.F. and Gu, Q., (2014), Steel basement. Architecture & Building Press, Beijing, China.
  7. Constantinou, M.C., Tsopelas P., Hammel, W. and Sigaher, A.N. (2001), "Toggle-brace-damper seismic energy dissipation systems", J. Struct. Eng., 127(2), 105-112. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(105).
  8. DoD (Department of Defense) (2013), Design of buildings to resist progressive collapse. Unified facilities criteria (UFC) 4-023-03. Washington D C: DoD.
  9. Esteghamati, M.Z. and Alimohammadi, S. (2022), "Reliability-based assessment of progressive collapse in horizontally irregular multi-story concrete buildings", Structures, 44, 1597-1606. https://doi.org/10.1016/j.istruc.2022.08.106.
  10. Elsanadedy, H., Alrubaidi, M., Abbas, H., Almusallam, T. and Al-Salloum, Y. (2021), "Progressive collapse risk of 2D and 3D steel-frame assemblies having shear connections", J. Constr. Steel. Res., 179, 106533. https://doi.org/10.1016/j.jcsr.2021.106533.
  11. Kim, T., Kim, U.-S. and Kim J. (2012), "Collapse resistance of unreinforced steel moment connections", Struct. Design. Tall. Spec. Build., 21, 724-735.https://doi.org/10.1002/tal.636.
  12. Kim, J., Lee, Y.H. and Choi, H. (2011), "Progressive collapse resisting capacity of braced frames", Struct. Design. Tall. Spec. Build., 20, 257-270.https://doi.org/10.1002/tal.574.
  13. Li, G.Q., Li, L.L., Jiang, B.H. and Lu, Y. (2018), "Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario", J. Constr. Steel. Res., 147, 1-15. https://doi.org/10.1016/j.jcsr.2018.03.023.
  14. Li, H.H. and El-Tawil, S. (2014), "Three-dimensional effects and collapse resistance mechanisms in steel frame buildings", J. Struct. Eng., 140(8), A401407. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000839.
  15. Lu, X.Z, Zhang, L., Lin, K.Q. and Li, Y. (2019), "Improvement to composite frame systems for seismic and progressive collapse resistance", Eng. Struct., 186, 227-242. https://doi.org/10.1016/j.engstruct.2019.02.006.
  16. Massimiliano, F. (2019), "Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action", Steel Compos. Struct., 30(3), 253-269. https://doi.org/10.12989/scs.2019.30.3.253.
  17. Meng, B., Hao, J.P., Zhong, W.H., Tan, Z. and Duan, S.C. (2020), "Improving collapse-resistance performance of steel frame with openings in beam web", Struct., 27, 2156-2169. https://doi.org/10.1016/j.istruc.2020.08.009.
  18. Meng, B., Zhong, W.H., Hao, J.P. and Song, X.Y. (2020), "Improving anti-collapse performance of steel frame with RBS connection", J. Constr. Steel. Res., 170, 106119. https://doi.org/10.1016/j.jcsr.2020.106119.
  19. Meng, B., Li, F.D., Zhong, W.H. and Zheng, Y.H. (2023), "Strengthening strategies against the progressive collapse of steel frames with extended end-plate connections", Eng. Struct., 274, 115154. https://doi.org/10.1016/j.engstruct.2022.115154.
  20. Meng, B., Li, L.D, Zhong, W.H., Hao, J.P. and Tan, Z. (2022), "Enhancing collapse-resistance of steel frame joints based on folded axillary plates", Adv. Steel. Constr., 17(1), 84-94. https://doi.org/10.18057/IJASC.2021.17.1.10.
  21. Qian, K., Lan, X., Li, Z., Li, Y. and Fu, F. (2020), "Progressive collapse resistance of two-story seismic configured steel sub-frames using welded connections", J. Constr. Steel. Res., 170, 106117. https://doi.org/10.1016/j.jcsr.2020.106117.
  22. Qian, K, Lan, X., Li, Y. and Fu, F. (2021), "Effect of steel braces on robustness of steel frames against progressive collapse", J. Struct. Eng., 147(11), 04021180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003161.
  23. Qiao, H.Y., Xie, X.Y. and Chen, Y. (2022), "Improvement of progressive collapse resistance for a steel frame system with beam-web opening", Eng. Struct., 256, 113995. https://doi.org/10.1016/j.engstruct.2022.113995.
  24. Qiu, L., Lin, F. and Wu, K.C. (2020), "Improving progressive collapse resistance of RC beam-column sub-assemblages using external steel cables", J. Perform. Constr. Facil., 34(1), 04019079. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001360.
  25. Randaxhe, J., Popa, N., Vassart, O., and Tondini, N. (2021), "Development of a plug-and-play fire protection system for steel columns", Fire. Saf. J., 121, 103272. https://doi.org/10.1016/j.firesaf.2020.103272.
  26. Sasani, M. and Sagiroglu, S. (2010), "Gravity load redistribution and progressive collapse resistance of a 20-story reinforced concrete structure following loss of an interior column", ACI. Struct. J., 107(6), 636-644. https://doi.org/10.1016/j.oceaneng.2010.06.006.
  27. Shan, S.D., Li, S., Xu, S., Kose, M.M., Sezen, H. and Wang, S.H. (2019), "Effect of partial infill walls on collapse behavior of reinforced concrete frames", Eng. Struct., 197, 109377. https://doi.org/10.1016/j.engstruct.2019.109377.
  28. Tan, Z., Zhong, W.H., Meng, B., Zheng, Y.H. and Duan, S.C. (2022a), "Effect of various boundary constraints on the collapse behavior of multi-story composite frames", J. Build. Eng., 52, 104412. https://doi.org/10.1016/j.jobe.2022.104412.
  29. Tan, Z., Zhong, W.H., Meng, B., Zheng, Y.H. and Duan, S.C. (2022b), "Effect of unequal spans on the collapse behavior of multi-story frames with RBS connections", Steel Compos. Struct., Under Review.
  30. Tan, Z., Zhong, W.H., Meng, B., Zheng, Y.H., Duan, S.C. and Qu, Z.Y. (2022c), "Numerical evaluation on collapse-resistant performance of steel-braced concentric frames", J. Constr. Steel. Res., 193, 107268. https://doi.org/10.1016/j.jcsr.2022.107268.
  31. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Song, X.Y. and Qiu, S.Z. (2020), "Research on the collapse-resistant performance of composite beam-column substructures using multi-scale models", Struct., 27, 86-101. https://doi.org/10.1016/j.istruc.2020.05.034.
  32. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Zheng, Y.H., Song, X.Y. and Duan, S.C. (2021a), "Quantitative assessment of resistant contributions of two-bay beams with unequal spans", Eng. Struct., 242, 112445. https://doi.org/10.1016/j.engstruct.2021.112445.
  33. Tan, Z., Zhong, W.H., Tian, L.M., Zheng, Y.H., Meng, B. and Duan, S.C. (2021b), "Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario", J. Build. Eng., 44, 102957. https://doi.org/10.1016/j.jobe.2021.102957.
  34. Triantafyllidis, Z. and Bisby, L.A. (2020), "Fibre-reinforced intumescent fire protection coatings as a confining material for concrete columns", Constr. Build. Mater., 231, 117085. https://doi.org/10.1016/j.conbuildmat.2019.117085.
  35. Vieira, A.D., Triantafyllou, S.P. and Bournas, D.A. (2019), "Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement", Eng. Struct., 207, 110002. https://doi.org/10.1016/j.engstruct.2019.110002.
  36. Wang, J.X., Shen, Y.J., Gao, S. and Wang W.D. (2022), Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal" Eng. Struct., 266, 114635. https://doi.org/10.1016/j.engstruct.2022.114635.
  37. Wei, J.P. Tian, L.M., Hao, J.P., Li, W., Zhang, C.B. and Li, T.L. (2019), "Novel principle for improving performance of steel frame structures in column-loss scenario", J. Constr. Steel. Res., 163, 105768. https://doi.org/10.1016/j.jcsr.2019.105768.
  38. Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
  39. Xu, M., Gao, S. Zhang, S.M. and Li, H.H. (2018), "Experimental study on bolted CFST-column joints with different configurations in accommodating column-loss", J. Constr. Steel. Res., 151, 122-131.https://doi.org/10.1016/j.jcsr.2018.09.021.
  40. Yu, J., Tang, J.H., Luo, L.Z. and Fang, Q. (2020), "Effect of boundary conditions on progressive collapse resistance of RC beam-slab assemblies under edge column removal scenario", Eng. Struct. 225, 111272. https://doi.org/10.1016/j.engstruct.2020.111272.
  41. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Song, X.Y. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
  42. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Zheng, Y.H. and Duan, S.C. (2021), "Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario", Steel Compos. Struct., 41(5), 663-679.https://doi.org/10.12989/scs.2021.41.5.663.