DOI QR코드

DOI QR Code

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang (College of Civil and Transportation Engineering, Hohai University) ;
  • Zhongqiu Fu (College of Civil and Transportation Engineering, Hohai University) ;
  • Bohai Ji (College of Civil and Transportation Engineering, Hohai University) ;
  • Xincheng Li (College of Civil and Transportation Engineering, Hohai University)
  • 투고 : 2022.05.22
  • 심사 : 2023.03.22
  • 발행 : 2023.04.25

초록

The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

키워드

과제정보

The research described in this paper was financially supported by the National Key Research and Development Program of China (No. 2017YFE0128700) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0616). The Fundamental Research Funds for the Central Universities (B230205037).

참고문헌

  1. Aggarwal, V. and Parameswaran, L. (2015), "Effect of overweight trucks on fatigue damage of a bridge", Springer India, New Delhi, India. https://doi.org/10.1007/978-81-322-2187-6_190.
  2. Alemdar, F., Gangel, R., Matamoros, A., Bennett, C., Barrett-Gonzalez, R., Rolfe, S. and Liu, H. (2014), "Use of CFRP overlays to repair fatigue damage in steel plates under tension loading", J. Compos. Constr., 18(4), 04013052. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000368.
  3. Amzallag, C., Gerey, J.P., Robert, J.L. and Bahuaud, J. (1994), "Standardization of the rain flow counting method for fatigue analysis.", Int. J. Fatigue., 16(4), 287-293. https://doi.org/10.1016/0142-1123(94)90343-3.
  4. Beales, C. and Cuninghame J.R. (1990), "Fatigue assessment of orthotropic steel bridge decks", Springer, Boston, USA. https://doi.org/10.1007/978-1-4899-7232-3_41.
  5. Bengar, H.A., Kiadehi, M.A., Shayanfar, J. and Nazari, M. (2020), "Effective flexural rigidities for RC beams and columns with steel fiber", Steel Compos. Struct., 34(3), 453-465. https://doi.org/10.12989/scs.2020.34.3.453.
  6. CECS77 (1996), Technical Specification for Strengthening Steel Structures, China Planning Press; Beijing, China. [in Chinese]
  7. Creager, M. and Paris, PC. (2005), "Elastic field equations for blunt cracks with reference to stress corrosion cracking", Int. J. Fract. Mech., 27(10), 1277-1296. https://doi.org/10.1007/BF00182890.
  8. Dexter, R.J. and Ocel, J.M. (2013), "Manual for repair and retrofit of fatigue cracks in steel bridges", The Federal Highway Administration; McLean, USA. https://www.fhwa.dot.gov/bridge/steel.cfm.
  9. Fang, L., Fu, Z.Q., Ji, B.H. and Kainuma, S. (2021), "Research on mixed mode crack drilling under out-of-plane shear in steel bridge deck", Int. J. Fatigue., 156, 106679. https://doi.org/10.1016/j.ijfatigue.2021.106679.
  10. Fettahoglu, A. (2015), "Effect of cross-beam on stresses revealed in orthotropic steel bridges", Steel Compos. Struct., 18(1), 149-163. https://doi.org/10.12989/scs.2015.18.1.14.
  11. Fisher, J.W., Barthelemy, B.M., Mertz, D.R. and Edinger, J.A. (1980), "Fatigue behavior of full-scale welded bridge attachments", Transportation Research Board, Washington D.C, USA. http://onlinepubs.trb.org/Onlinepubs/nchrp/nchrp_rpt_227.pdf.
  12. Fu, Z.Q., Ji, B.H., Wang, Y.X. and Xu, J. (2018), "Fatigue performance of rib-roof weld in steel bridge decks with corner braces", Steel Compos. Struct., 26(1), 103-113. https://doi.org/10.12989/scs.2018.26.1.103.
  13. Gere, J.M. and Timoshenko, S.P. (1997), Mech. Mater., Van Nostrand Reinhold Co, New York, NY, USA. http://doi.org/10.1007/978-1-4899-3124-5.
  14. Heng, J.L., Zheng, K.F., Kaewunruen, S., Zhu, J. and Baniotopoulos, C. (2020), "Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs", Steel Compos. Struct., 35(6), 799-813. https://doi.org/10.12989/scs.2020.35.6.799.
  15. Ishikawa, T., Yamada, K., Kakiichi, T. and Li, H. (2011), "Extending fatigue life of cracked out-of-plane gusset by ICR treatment", Struct. Eng. Earthq. Eng., 28(1), 21-28. https://doi.org/10.2208/jsceseee.28.21s.
  16. Kolstein M.H. (2007), "Fatigue classification of welded joints in orthotropic steel bridge decks", Publication of Transport & Road Research Laboratory, Wokingham, United Kingdom.
  17. Li, C.X., Li, Y., Chen, Z.Y. and Ke, L. (2017), "Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder", China J. Highw. Transp., 30(3), 121-131. [in Chinese] http://doi.org/10.3969/j.issn.1006-3897.2017.03.013.
  18. Okura, I. and Ishikawa, T. (2002), "Stop-hole conditions to prevent re-initiation of fatigue cracks", Steel Compos. struct., 2(6), 475-488. https://doi.org/10.12989/scs.2002.2.6.475.
  19. Petros, P. and Xanthakos, B.S. (2007), Orthotropic deck bridges. John Wiley & Sons, Inc. Hoboken, USA. https://doi.org/10.1002/9780470172889.ch7.
  20. Reddy, S., Jaswanthsai, V., Madhavan, M. and Kumar, V. (2016), "Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study", Thin. Wall. Struct., 98, 252-262. https://doi.org/10.1016/j.tws.2015.09.018.
  21. Schubbe, J.J. and Mall, S. (1999), "Investigation of a cracked thick aluminum panel repaired with a bonded composite patch", Eng. Fract. Mech., 63(3), 305-323. https://doi.org/10.1016/S0013-7944(99)00032-6.
  22. Sharif, A.M., Assi, N.A. and Al-Osta, M.A. (2020), "Use of UHPC slab for continuous composite steel-concrete girders", Steel Compos. Struct., 34(3), 321-332. https://doi.org/10.12989/scs.2020.34.3.321.
  23. Su, L., Wang, S.L., Gao, Y., Liu, J.L. and Shao, X.D. (2020), "In situ experimental study on the behavior of UHPC composite orthotropic steel bridge deck", Materials, 13(1), 253. https://doi.org/10.3390/ma13010253.
  24. Wang, Q.W., Shi, Q.X., Xu, Z.D. and He, H.X. (2019), "Axial capacity of reactive powder concrete filled steel tube columns with two load conditions", Steel Compos. Struct., 31(1), 13-25. https://doi.org/10.12989/scs.2019.31.1.013.
  25. Wang, Y.X., Fu, Z.Q., Ge, H.B., Ji, B.H. and Hayakawa, N. (2019), "Cracking reasons and features of fatigue details in the diaphragm of curved steel box girder", Eng. Struct., 201, 109767. https://doi.org/10.1016/j.engstruct.2019.109767.
  26. Wei, J. and Zhao, J.H. (1997), "A two-strain-gage technique for determining mode I stress-intensity factor", Theor. Appl. Fract. Mec., 28, 135-140. https://doi.org/10.1016/S0167-8442(97)00038-4.
  27. Zong, L., Shi, G., Wang, Y.Q. and Sun, T. (2015), "Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld", Mater. Des., 66, 196-208. https://doi.org/10.1016/j.matdes.2014.10.059.