DOI QR코드

DOI QR Code

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni (Department of Civil Engineering, School of Engineering, University of the Peloponnese) ;
  • Ali Ghamari (Department of Civil Engineering, Ilam Branch, Islamic Azad University) ;
  • Chanachai Thongchom (Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University)
  • 투고 : 2022.02.04
  • 심사 : 2023.03.28
  • 발행 : 2023.04.25

초록

Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

키워드

과제정보

This research was supported by the Thammasat University Research Unit in Structural and Foundation Engineering, Thammasat University. In addition, this work was supported by the Thailand Science Research and Innovation Fundamental Fund fiscal year 2023. We also thank Dr. Sajjad Tavakoli for his guidance in conducting laboratory tests.

참고문헌

  1. AASHTO American Association of State Highway and Transportation Officials (2017), AASHTO LRFD Bridge Design Specifications, Washington, DC: AASHTO.
  2. AISC 341-16 (2016), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  3. Akbari-Lor, H., Izadinia, M. and Memarzadeh, P. (2019), "Experimental evaluation of steel connections with horizontal slit dampers", Steel Compos. Struct., 32(1), 79-90. https://doi.org/10.12989/scs.2019.32.1.079.
  4. Alshimmeri, A.J.H., Kontoni, D.P.N. and Ghamari, A. (2021), "Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper", Comput. Concr. Int. J. 28(3), 275-287. https://doi.org/10.12989/cac.2021.28.3.275.
  5. ANSYS (2020), Academic Research Mechanical, Release 2020R2, https://www.ansys.com/academic
  6. Atlayan, O. and Charney, F.A. (2014), "Hybrid buckling-restrained braced frames", J. Constr. Steel Res., 96, 95-105. https://doi.org/10.1016/j.jcsr.2014.01.001.
  7. Basler, K. (1961), "Strength of plate girders in shear", J. Struct. Division, 87(7), 151-180. https://doi.org/10.1061/JSDEAG.0000697
  8. Bakhshayesh, Y., Shayanfar, M. and Ghamari, A. (2021), "Improving the performance of concentrically braced frame utilizing an innovative shear damper", J. Constr. Steel Res., 182, 106672. https://doi.org/10.1016/j.jcsr.2021.106672.
  9. Caprili, S., Mussini, N. and Salvatore, W. (2018), "Experimental and numerical assessment of EBF structures with shear links", Steel Compos. Struct., 28(2), 123-138. https://doi.org/10.12989/scs.2018.28.2.123.
  10. Deng, K., Pan, P., Sun, J., Liu, J. and Xue Y. (2014), "Shape optimization design of steel shear panel dampers", J. Constr. Steel Res., 99, 187-193, https://doi.org/10.1016/j.jcsr.2014.03.001.
  11. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  12. Fan, S., Ding, Z., Du, L., Shang, C. and Liu, M. (2016), "Nonlinear finite element modeling of two-stage energy dissipation device with low-yield-point steel", Int. J. Steel Struct., 16, 1107-1122. https://doi.org/10.1007/s13296-016-0029-4.
  13. Garivani, S., Aghakouchak, A.A. and Shahbeyk, S. (2016), "Numerical and experimental study of comb-teeth metallic yielding dampers", Int. J. Steel Struct., 16, 177-196. https://doi.org/10.1007/s13296-016-3014-z.
  14. Ghamari, A., Haeri, H., Khaloo, A. and Zhu, Z. (2019), "Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper", Steel Compos. Struct. Int. J., 30(4), 383-392. https://doi.org/10.12989/SCS.2019.30.4.383.
  15. Ghamari, A., Almasi, B., Kim, S.H., Jeong, S.H. and Hong K.J. (2021), "An innovative steel damper with a flexural and shear-flexural mechanism to enhance the cbf system behavior: an experimental and numerical study", J. Appl. Sci., 11(23), 11454. https://doi.org/10.3390/app112311454.
  16. Gray, M.G., Christopoulos, C. and Packer, J.A. (2017), "Design and full-scale testing of a cast steel yielding brace system in a braced frame", J. Struct. Eng., 143(4), 04016210.1-04016210.9. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001692.
  17. Guo, W., Wang, X., Yu, Y., Chen, X., Li, S., Fang, W., Zeng, C., Wang, Y. and Bu, D. (2020), "Experimental study of a steel damper with X-shaped welded pipe halves", J. Constr. Steel Res., 170, 106087. https://doi.org/10.1016/j.jcsr.2020.106087.
  18. Han, Q., Jia, J., Xu, Z., Bai, Y. and Song, N. (2014), "Experimental evaluation of hysteretic behavior of rhombic steel plate dampers", Adv. Mech. Eng., 2014, 185629, 1-8. https://doi.org/10.1155/2014/185629.
  19. He, Z. and Chen, Q. (2021), "Upgrading the seismic performance of underground structures by introducing lead-filled steel tube dampers", Tunn. Undergr. Sp. Tech., 108, 103727. https://doi.org/10.1016/j.tust.2020.103727.
  20. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao., J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  21. Hsu, H.L. and Halim, H. (2017), "Improving seismic performance of framed structures with steel curved dampers", Eng. Struct., 130, 99-111. https://doi.org/10.1016/j.engstruct.2016.09.063.
  22. Jaisee, S., Yue, F. and Ooi, Y.H. (2021), "A state-of-the-art review on passive friction dampers and their applications", Eng. Struct., 235, 112022. https://doi.org/10.1016/j.engstruct.2021.112022.
  23. Jamkhaneh, M.E., Homaioon Ebrahimi, A. and Shokri Amiri M. (2018), "Seismic performance of steel-braced frames with an all-steel buckling restrained brace", Practice Periodical Struct. Des. Constr., 23(3), 04018016. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000381.
  24. Khazaei, M. (2013), "Investigation on dynamics nonlinear analysis of steel frames with steel dampers", Procedia Eng., 54, 401-412. https://doi.org/10.1016/j.proeng.2013.03.036.
  25. Kontoni, D.P.N. and Farghaly, A.A. (2019a), "Mitigation of the seismic response of a cable-stayed bridge with soil-structureinteraction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
  26. Kontoni, D.P.N. and Farghaly, A.A. (2019b), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  27. Kontoni, D.P.N. and Farghaly, A.A. (2020), "TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction", Wind Struct., 30(4), 423-432. https://doi.org/10.12989/was.2020.30.4.423.
  28. Lee, J. and Kim, J. (2017), "Development of box-shaped steel slit dampers for seismic retrofit of building structures", Eng. Struct., 150, 934-946. https://doi.org/10.1016/j.engstruct.2017.07.082.
  29. Li, H.N. and Li, G. (2007), "Experimental study of structure with "dual function" metallic dampers", Eng. Struct., 29(8), 1917-1928. https://doi.org/10.1016/j.engstruct.2006.10.007.
  30. Lin, Y., Yang, S., Guan, D. and Guo, Z. (2020), "Modified strip model for indirect buckling restrained shear panel dampers", J. Constr. Steel Res., 175, 106371, https://doi.org/10.1016/j.jcsr.2020.106371.
  31. Lotfi S., Riahi, T. and Hashemi, M. (2019), "Investigating the analytical and experimental performance of a pure torsional yielding damper", J. Constr. Steel Res., 161, 385-399. https://doi.org/10.1016/j.jcsr.2019.07.010.
  32. Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
  33. Maalek, S., Heidary-Torkamani, H., Dolatshahi, M. and Naeeini, S.T. (2019), "Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces", Steel Compos. Struct. Int. J., 30(3), 201-215. https://doi.org/10.12989/scs.2019.30.3.201.
  34. Mohsenian, V. and Mortezaei, A. (2019), "A new energy-absorbing system for seismic retrofitting of frame structures with slender braces", Bulletin of Earthq. Eng., 17, 2715-2739. https://doi.org/10.1007/s10518-018-00543-7.
  35. Oh, S.-H., Kim, Y.-J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
  36. Ozcelik, Y. and Clayton, P.Μ. (2017), "Strip model for steel plate shear walls with beam-connected web plates", Eng. Struct., 136, 369-379, https://doi.org/10.1016/j.engstruct.2017.01.051.
  37. Ozkaynak, H. (2017), "Model proposal for steel cushions for use in Reinforced Concrete frames", KSCE J. Civil Eng., 21, 2717-2727. https://doi.org/10.1007/s12205-017-0477-1.
  38. Okazaki, T., Engelhardt, M.D., Hong, J.-K., Uang, C.-M. and Drolias, A. (2015), "Improved link-to-column connections for steel eccentrically braced frames", J. Struct. Eng., 141(8), 04014201. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001041.
  39. Park, H.Y. and Oh, S.H. (2020), "Structural performance of beam system with T-stub type slit damper", Eng. Struct., 205, 109858. https://doi.org/10.1016/j.engstruct.2019.109858.
  40. Richards, P.W. and Uang, C.M. (2005), "Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity", J. Struct. Eng., 131(10), 1546-1552. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1546).
  41. Roeder, C.W. and Popov, E.P. (1977), "Inelastic behavior of eccentrically braced steel frames under cyclic loadings", NASA STI/Recon Technical Report N 78, 20375.
  42. Roeder, C.W. and Popov, E.P. (1978), "Eccentrically braced steel frames for earthquakes", J. Struct. Division, 104(3), 391-412. https://doi.org/10.1061/JSDEAG.0004875.
  43. Salimi, S.M, Rahimi, S., Hoseinzadeh, M., Kontoni, D.P.N. and Ebadi-Jamkhaneh, M. (2021), "Numerical 3D finite element assessment of bending moment-resisting frame equipped with semi-disconnected steel plate shear wall and yielding plate connection", Metals, 11(4), 604. https://doi.org/10.3390/met11040604.
  44. Shahri, S.F. and Mousavi, S.R. (2018), "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Compos. Struct. Int. J., 26(3), 289-301. https://doi.org/10.12989/scs.2018.26.3.289.
  45. Shirinkam, M.R. and Razzaghi, J. (2020), "Experimental and analytical investigation on the behavior of metallic Box-Shaped Dampers (BSD)", Structures, 23, 766-778. https://doi.org/10.1016/j.istruc.2019.12.018.
  46. Suneel Kumar, M., Senthilkumar, R. and Sourabha L. (2019), "Seismic performance of special concentric steel braced frames", Structures, 20, 166-175. https://doi.org/10.1016/j.istruc.2019.03.012.
  47. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara R.J. (2008), "Energy dissipation systems for seismic applications: current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
  48. Taiyari, F., Mazzolani, F. and Bagheri, S. (2019), "A proposal for energy dissipative brace with U-shaped steel strips", J. Constr. Steel Res., 154, 110-122. https://doi.org/10.1016/j.jcsr.2018.11.031.
  49. Tsai, K.-C., Chen, H.-W., Hong, C.-P. and Su, Y.-F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727.
  50. Vetr, M.G., Ghamari, A. and Bouwkamp, J. (2017), "Investigating the nonlinear behavior of eccentrically braced frame with vertical shear links (V-EBF)", J. Build. Eng., 10, 47-59. https://doi.org/10.1016/j.jobe.2017.02.002.
  51. Vetr, M.G. and Ghamari, A. (2019), "Experimentally and analytically study on eccentrically braced frame with vertical shear links", Struct. Des. Tall Spec. Build., 28(5), e1587. https://doi.org/10.1002/tal.1587.
  52. Wang, Y.P. and Chien, C.S.C. (2009), "A study on using pre-bent steel strips as seismic energy-dissipative devices", Earthq. Eng. Struct. Dynam., 38(8), 1009-1026, https://doi.org/10.1002/eqe.880.
  53. Wang, C.L., Qing, Y., Wu, J., Wang, J. and Gu, Z. (2020), "Analytical and experimental studies on buckling-restrained brace with gap-supported tendon protection", J. Constr. Steel Res., 64, 105807. https://doi.org/10.1016/j.jcsr.2019.105807.
  54. Xia, C. and Hanson, R.D. (1992), "Influence of ADAS element parameters on building seismic response", J. Struct. Eng., 118(7), 1903-1918. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1903).
  55. Yang, T.Y., Sheikh, H. and Tobber L. (2019), "Influence of the brace configurations on the seismic performance of steel concentrically braced frames", Front. Built Environ., 5, 1-13. https://doi.org/10.3389/fbuil.2019.00027.
  56. Zahrai, S.M. (2015), "Cyclic testing of chevron braced steel frames with IPE shear panels", Steel Compos. Struct., 19(5), 1167-1184. https://doi.org/10.12989/SCS.2015.19.5.1167.
  57. Zahrai, S.M. and Froozanfar, M. (2019), "Improving seismic behavior of mrfs by u-shaped hysteretic damper along diagonal brace", Int. J. Steel Struct., 19, 543-558. https://doi.org/10.1007/s13296-018-0139-2.