Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006631).
References
- Adibia, M., Marefat, M.S., Esmaeily, A., Arani, K.K. and Esmaeily, A. (2017), "Seismic retrofit of external concrete beam-column joints reinforced by plain bars using steel angles prestressed by cross ties", Eng. Struct., 148, 813-828. https://doi.org/10.1016/j.engstruct.2017.07.014.
- Afefy, H.M. (2020), "Seismic retrofit of reinforced-concrete coupled shear walls: A review", Pract. Period. Struct. Des. Constr., 25(3), https://doi.org/10.1061/(ASCE)SC.1943-5576.0000489.
- AISC-360 (2016), Specification for Structural Steel Buildings, Chicago, USA.
- Akin, E., Korkmaz, S.Z., Korkmaz, H.H. and Diri, E. (2016), "Rehabilitation of infilled reinforced concrete frames with thin steel plate shear walls", J. Perform. Constr. Facil., 0(4). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000840.
- Aninthaneni, P.K. and Dhakal, R.P. (2017), "Demountable precast concrete frame-building system for seismic regions: conceptual development", J. Arch. Eng., 2 (4), https://doi.org/10.1061/(ASCE)AE.1943-5568.0000275.
- Ansys® (2015), Academic Research Mechanical, Release 16.2, Analysis User's Manual, USA.
- Arteta, C.A., Carrillo, J., Archbold, J., Gaspar, D., Pajaro, C., Araujo, G. and Mosalam, K.M. (2019), "Response of mid-rise reinforced concrete frame buildings to the 2017 puebla earthquake", Earthq. Spectra., 5(4), 1763-1793. https://doi.org/10.1193/061218EQS144M.
- ASCE 41 (2017), Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers; USA.
- Bagheri, H., Hashemi, A. and Yousef-Beik, S.M.M. (2020), "New self-centering tension-only brace using resilient slip-friction joint: experimental tests and numerical analysis", J. Struct. Eng., 146(10), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002789.
- Barbagallo, F., Bosco, M., Marino, E.M. and Rossi, P.P. (2018), "Seismic retrofit of braced frame buildings by RC rocking walls and viscous dampers", Earthq. Eng. Struct. Dynam., 47(13), 2682-2707. https://doi.org/10.1002/eqe.3105.
- Blebo, F.C. and Roke, D.A. (2018), "Seismic-resistant self-centering rocking core system with buckling restrained columns", Eng. Struct., 173, 372-382. https://doi.org/10.1016/j.engstruct.2018.06.117.
- Cao, X., Wu, L. and Li, Z. (2020), "Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA", Eng. Struct., 209, 109980. https://doi.org/10.1016/j.engstruct.2019.109980.
- Cao, X.Y., Wu, G., Feng, D.C., Wang, Z. and Cui, H.R. (2020), "Research on the seismic retrofit performance of RC frames using SC-PBSPC BRBF substructures", Earthq. Eng. Struct. Dynam., 49(8), 794-816. https://doi.org/10.1002/eqe.3265.
- Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 1 5(4), 414-424. http://dx.doi.org/10.1061/(ASCE)0733-9445(2009).
- Chancellor, N.B., Eatherton, M.R., Roke, D.A. and Akbas T. (2014), "Self-centering seismic lateral force resisting systems: high-performance structures for the city of tomorrow", Buildings., 4(3), 520-548. https://doi.org/10.3390/buildings4030520.
- Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 1(1), 93-112. https://doi.org/10.12989/sem.2009.31.1.093
- Chowdhury, M.A., Rahmzadeh, A. and Alam, M.S. (2020), "Improving the seismic performance of post-tensioned self-centering connections using SMA angles or end plates with SMA bolts", Smart Mater. Struct., 28(7), https://doi.org/10.1088/1361-665X/ab1ce6.
- Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
- Dong, H., Du, X., Han, Q., Hao, H., Bi, K. and Wang, X. (2017), "Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses, of bridge structures with double column piers", Eng. Struct., 148, 47-62. https://doi.org/10.1016/j.engstruct.2017.06.011.
- Elettore, E., Freddi, F., Latour, M. and Rizzano, G. (2021), "Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases", J. Constr. Steel Res., 179, 106543. https://doi.org/10.1016/j.jcsr.2021.106543.
- Eldin, M. (2007), Application of Recent Techniques of Pushover for Evaluating Seismic Performance of Multistory Buildings, M.Sc. Dissertation, Cairo University, Egypt. https://doi.org/10.13140/RG.2.2.18402.96961.
- Eldin, M. (2014), A Simplified Method for Seismic Life-Cycle Cost Estimation of Structures with Application on Sensitivity Analysis, Ph.D. Dissertation, Sungkyunkwan University, Suwon. https://doi.org/10.13140/RG.2.2.11692.08324.
- Fajfar, P. (2000), "A nonlinear analysis method for performance based seismic design", Earthq. Eng. Struct. Dynam., 16(3), 573-592. https://doi.org/10.1193/1.1586128.
- Fan, X., Xu, L. and Li, Z. (2019), "Seismic performance evaluation of steel frames with pre-pressed spring self-centering braces", J. Constr. Steel Res., 162, https://doi.org/10.1016/j.jcsr.2019.105761.
- Fang, C. Wang, W. and Shen, D. (2021), "Development and experimental study of disc spring-based self-centering devices for seismic resilience", J. Struct. Eng., 147(7), https://doi.org/10.1061/(ASCE)ST.1943-541X.0003058.
- Farfani, H.A., Behnamfar, F. and Fathollahi, A. (2015), "Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines", Expert Syst. Appl., 42(22), 8971-8981. https://doi.org/10.1016/j.eswa.2015.07.053
- FEMA 547 (2006), Techniques for the Seismic Rehabilitation of Existing Buildings, USA.
- FEMA P-58-1 (2018), Seismic Performance Assessment of Buildings, 1(2), Applied Technology Council, California, USA.
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington DC, USA.
- Formisano, A., Massimilla, A., Di Lorenzo, G. and Landolfo, R. (2020), "Seismic retrofit of gravity load designed RC buildings using external steel concentric bracing systems", Eng. Failure Anal., 111, 104-485. https://doi.org/10.1016/j.engfailanal.2020.104485.
- Fragiadakis, M., Lagaros, N.D. and Papadrakakis, M. (2006), "Performance-based multiobjective optimum design of steel structures considering life-cycle cost", Struct Multidiscip Optimiz, 2, 1-11. https://doi.org/10.1007/s00158-006-0009-y.
- Gencturk, B. (2013), "Life-cycle cost assessment of RC and ECC frames using structural optimization", Earthq. Eng. Struct. Dyn., 42, 61-79. https://doi.org/10.1002/eqe.2193.
- Gencturk, B. and Elnashai, A.S. (2012), "Life cycle cost considerations in seismic design optimization of structures", In Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications., 1-22. https://doi.org/10.4018/978-1-4666-1640-0.ch001.
- Gioiella, L., Tubaldib, E., Gara, F., Dezi, L. and Dall'Astaa, A. (2018), "Modal properties and seismic behaviour of buildings equipped with external dissipative pinned rocking braced frames", Eng. Struct., 172, 807-819. https://doi.org/10.1016/j.engstruct.2018.06.043.
- Gorgulu, T., Tama, Y.S., Yilmaz, S., Kaplan, H. and Ay, Z. (2012), "Strengthening of reinforced concrete structures with external steel shear walls", J. Constr. Steel Res., 70, 226-235. https://doi.org/10.1016/j.jcsr.2011.08.010.
- Guo, T., Wang, J., Song, Y., Xuan, W. and Chen, Y. (2020), "Self-centering cable brace with friction devices for enhancing seismic performance of RC frame structures", Eng. Struct., 207(1), 110187. https://doi.org/10.1016/j.engstruct.2020.110187.
- Guo, T., Xu, Z., Song, L., Wang, L. and Zhang, Z. (2017), "Seismic resilience upgrade of RC frame building using self-centering concrete walls with distributed friction devices", J. Struct. Eng., 14 (12), 04017160. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001901.
- Huang, L., Zhou, Z., Zhang, Z. and Huang, X. (2018), "Seismic performance and fragility analyses of self-centering prestressed concrete frames with infill walls", J. Earthq. Eng., 25(3), 535-565. https://doi.org/10.1080/13632469.2018.1526142.
- ICMS (2019), International Construction Cost Survey, Turner & Townsend. www.turnerandtownsend.com
- Javidan, M.M., Eskandari Nasab, M.S., and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers," Steel Compos. Struct., 9(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
- Javidan, M.M. and Kim, J. (2022), "A ductile steel damper-brace for low-damage framed structures", Steel Compos. Struct., 44(3), 311-323. https://doi.org/10.12989/scs.2022.44.3.311.
- Jeong, S.H. and Elnashai, A.S. (2007), "Probabilistic fragility analysis parameterized by fundamental response quantities", Eng. Struct., 29(6), 1238-1251. https://doi.org/10.1016/j.engstruct.2006.06.026.
- Kang, H., Adane, M., Chun, S. and Kim, J. (2022), "Development of seismic retrofit system made of steel frame with vertical slits," Steel Compos. Struct., 44(2), 269-280. https://doi.org/10.12989/scs.2022.44.2.269.
- Kam, W.Y., Pampanin, S., Palermo, A. and Carr, A. (2008), "Design procedure and behaviour of advanced flag-shape (AFS) MDOF systems", New Zealand Society of Earthquake Engineering (NZSEE) Conference, Wairakei, New Zealand.
- Kari, A., Ghassemieh, M. and Badarloo, B. (2020), "Development and design of a new self-centering energy-dissipative brace for steel structures", J. Intell. Mater. Syst. Struct., 0(6), 924-938. https://doi.org/10.1177/1045389X19828502.
- Kucukgoncu, H. and Altun, F. (2020), "The seismic behaviour of RC exterior shear walls used for strengthening of intact and damaged frames", Bull. Earthq. Eng., 18, 3683-3709. https://doi.org/10.1007/s10518-020-00839-7.
- Kurosawa, R., Sakata, H., Qu, Z. and Suyama, T. (2019), "Cyclic loading tests on RC moment frames retrofitted by PC frames with mild press joints through RC slabs for connection", Eng. Struct., 197, 109-440. https://doi.org/10.1016/j.engstruct.2019.109440.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 1 7(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
- Lin, Y.C., Sause, R. and Ricles, J.M. (2013), "Seismic performance of steel self-centering, moment-resisting frame: hybrid simulations under design basis earthquake", J. Struct. Eng., 1 9(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0000745.
- Liu, C., Junji, S., Kuramoto, H., Takashi T. and Takashi, K. (2016), "Experiment study on RC frame retrofitted by the external structure", Earthq. Eng. Eng. Vib., 15, 563-574. https://doi.org/10.1007/s11803-016-0344-y.
- Magliulo, G., Ercolino, M., Petrone, C., Coppola, O. and Manfredi, G. (2014), "The Emilia earthquake: seismic performance of precast reinforced concrete buildings", Earthq Spectra., 0, 891-912. http://doi.org/10.1193/091012EQS285M.
- Mathwork (2018), MATLAB ver. R2018b Reference Manual.
- Mazza, F. and Mazza, M. (2019), "Seismic retrofit of gravity loads designed r.c. framed buildings combining CFRP and hysteretic damped braces", Bull. Earthq. Eng., 17, 3423-3445. https://doi.org/10.1007/s10518-019-00593-5.
- McKenna, F., Fenves, G.L. and Scott, M.H. (2011), Open System for Earthquake Engineering Simulation, Univ. of California, Berkeley, CA, USA.
- Michel, C., Karbassib, A. and Lestuzzib, P. (2018), "Evaluation of the seismic retrofit of an unreinforced masonry building using numerical modeling and ambient vibration measurements", Eng. Struct., 158, 124-135. https://doi.org/10.1016/j.engstruct.2017.12.016.
- Morkhade, S.G., Shaikh, S., Kumbhar A., Shaikh, A. and Tiwari, R. (2018), "Comparative study of ultimate load for castellated and plain-webbed beams", Int. J. Civil Eng. Technol., 9(8), 1466-1476.
- Movaghati, S. and Abdelnaby, A.E. (2021), "Experimental and analytical investigation of improved behavior of existing steel connections by adding self-centering capabilities", J. Build. Eng., 43, 102543. https://doi.org/10.1016/j.jobe.2021.102543.
- Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable system", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
- Naeem, A. and Kim, J. (2021), "Seismic retrofit of 3000 kVA power transformer using friction dampers and prestressed tendons", Structures, 2, 641-650. https://doi.org/10.1016/j.istruc.2021.03.029.
- Naeem, A., Nour Eldin, M., Kim, J. and Kim, J.W. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
- Noureldin, M. Kim, J. and Kim, J. (2018), "Optimal distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos Struct., 27(5), 633-646, https://doi.org/10.12989/scs.2018.27.5.633.
- Noureldin, M. and Kim, J. (2020), "Parameterized seismic life-cycle cost evaluation method for building structures", J. Struct. Infrastruct. Eng., 17(3), 425-439. https://doi.org/10.1080/15732479.2020.1759656.
- Noureldin, M. and Kim, J. (2020), "Seismic fragility evaluation of retrofitted low-rise rc structures", 3rd GeoMEast 2019 International Conference., https://doi.org/10.1007/978-3-030-34252-4_1.
- Noureldin, M., Ali, A., Nasab, M.S.E. and Kim, J. (2021a), "Optimum distribution of seismic energy dissipation devices using neural network and fuzzy inference system", Computer-Aided Civil and Infrastruct. Eng., https://doi.org/10.1111/mice.12673.
- Noureldin, M., Dereje, A.J. and Kim, J. (2020a), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
- Noureldin, M., Dereje, A.J. and Kim, J. (2020b), "Seismic retrofit of framed buildings using self-centering PC frames", J. Struct. Eng., 146(10), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002786.
- Noureldin, M., Memon, S.A., Gharagoz, M. and Kim, J. (2021b), "Performance-based seismic retrofit of RC structures using concentric braced frames equipped with friction dampers and disc springs", Eng. Struct., 243, 112555, https://doi.org/10.1016/j.engstruct.2021.112555.
- Noureldin, M., Ahmed, S. and Kim, J. (2021c), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/10.12989/scs.2021.41.1.013.
- Noureldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487.
- Noureldin, M., Naeem, A. and Kim, J. (2019), "Seismic retrofit of a structure using self-centering precast concrete frames with enlarged beam ends", Magazine Concr. Res., 72(22), 1155-1170. https://doi.org/10.1680/jmacr.19.00012.
- Noureldin, M., Ali, A., Sim, S. and Kim, J. (2022), "A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability", J. Build. Eng., 50, 104190. https://doi.org/10.1016/j.jobe.2022.104190.
- Nzabonimpa, J.D., Hong, W.K. and Kim, J. (2018), "Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames", Comput. Struct., 189, 31-48. https://doi.org/10.1016/j.compstruc.2017.04.016.
- Ozcelik, R., Binici, B. and Kurc, O. (2012), "Pseudo dynamic testing of an rc frame retrofitted with chevron braces", J. Earthq. Eng., 16(4), 515-539. https://doi.org/10.1080/13632469.2011.653297.
- PEER (2021), Pacific Earthquake Engineering Research (PEER) Center: NGA Database. www.peer.berkeley.edu
- Rafezy, B., Huynh, Q., Gallart, H. and Kheirollahi, M. (2015), "An innovative method for the seismic retrofit of existing steel moment frame structures using side plate technology", Second ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, California, USA. https://doi.org/10.1061/9780784479728.013.
- Roia, D., Gara, F., Balducci, A. and Dezi, L. (2014), "Ambient vibration tests on a reinforced concrete school building before and after retrofit works with external steel 'dissipative towers", Proceedings of the International Conference on Structural Dynamic EURODYN., Porto, Portugal. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002865.
- Sarand, N.I. and Jalali, A. (2020), "Evaluation of seismic performance of improved rocking concentrically braced-frames with zipper columns", Periodica Polytechnica Civil Engineering., 64(2), https://doi.org/10.3311/PPci.15052.
- Silwal, B., Huang, Q. and Ozbulut, O.E. (2018), "Comparative seismic fragility estimates of steel moment frame buildings with or without superelastic viscous dampers", J. Intell. Mater. Syst. Struct., 29(18), 3598-3613. https://doi.org/10.1177/1045389X18798936.
- Soltanzadeh, G., Osman, H.B., Vafaei, M. and Vafaei, Y.K. (2017), "Seismic retrofit of masonry wall infilled RC frames through external post-tensioning", Bull. Earthq. Eng., 16(7), 1-24. https://doi.org/10.1007/s10518-017-0241-4.
- Steel Benchmarker, Report #329, (2019), Price History Tables and Charts for, Hot-rolled Band, Cold-rolled Coil, Standard Plate, Rebar, Steel Scrap, www.steelbenchmarker.com.
- Takeuchi, T., Yasuda, K. and Iwata, M. (2009), "Seismic retrofit using energy dissipation facades", ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, California, USA. https://doi.org/10.1061/41084(364)91.
- Vahedi, S., Javadi, P. and Hosseini, M.H. (2019), "Seismic evaluation of a nonductile soft-first-story RC building retrofitted with steel-braced frames", J. Perform. Constr. Facil., ASCE, (6), 04019064. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001325.
- Veismoradi, S., Yousef-beik, S.M.M., Zarnani, P. and Quenneville, P. (2020), "Seismic retrofit of RC-frames using resilient slip friction joint toggle-bracing system", Proceedings of the 2020 New Zealand Society for Earthquake Engineering Annual Technical Conference, New Zealand. https://repo.nzsee.org.nz/handle/nzsee/1729.
- Wang, W., Fang, C., Shen, D., Zhang, R., Ding, J. and Wu, H. (2021), "Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation", Eng. Struct., 242, 112527. https://doi.org/10.1016/j.engstruct.2021.112527.
- Wen, Y.K. and Kang, Y.J. (2001), "Minimum building life cycle cost design criteria I: Methodology", J. Struct. Eng. (ASCE)., 127(3), 330-337. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(330).
- Wolski, M., Ricles, J.M. and Sause, R. (2009), "Experimental study of a self-centering beam-column connection with bottom flange friction device", J. Struct. Eng., 1 5(5), 479-488. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000006.
- Wu, H., Zhou, Y. and Liu, W. (2019), "Collapse fragility analysis of self-centering precast concrete walls with different post-tensioning and energy dissipation designs", Bull. Earthq. Eng., 17, 3593-3613. https://doi.org/10.1007/s10518-019-00591-7.
- Xu, L., Fan, X. and Li, Z. (2020), "Seismic assessment of buildings with prepressed spring self-centering energy dissipation braces", J. Struct. Eng., 146(2), 04019190. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002493.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2016a), "Development and experimental verification of a prepressed spring self-centering energy dissipation brace", Eng Struct., 127, 49-61. https://doi.org/10.1016/j.engstruct.2016.08.043.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2016b), "Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs", Earthq. Eng. Struct. Dynam., 46(7), 1065-1080. https://doi.org/10.1002/eqe.2844.
- Xu, Z.D., Teng, G. and Jie, L. (2020), "Experimental and theoretical study of high energy dissipation viscoelastic dampers based on acrylate rubber matrix", J. Eng. Mech., 146(6), 04020057. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.
- Zhang, Z., Bi, K., Hao, H., Sheng, P., Feng, L. and Xiao, D. (2020), "Development of a novel deformation-amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings", Eng. Struct., 216, https://doi.org/10.1016/j.engstruct.2020.110751.