DOI QR코드

DOI QR Code

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu (Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology) ;
  • Jianfeng Li (Faculty of Engineering, China University of Geosciences (Wuhan)) ;
  • Hamidreza Aghajanirefah (Department of Civil Engineering, Faculty of Engineering, Qazvin Branch Islamic Azad University) ;
  • Mohammad Khishe (Department of Electrical Engineering, Imam Khomeini Marine Science University) ;
  • Abbas Khishe (Department of Civil Engineering, Iran University of Science and Technology) ;
  • Arsalan Mahmoodzadeh (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Banar Fareed Ibrahim (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University)
  • Received : 2022.04.24
  • Accepted : 2023.03.13
  • Published : 2023.04.25

Abstract

The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Keywords

References

  1. Abedini, H., Vaez, S.R.H. and Zarrineghbal, A. (2020), "Optimum design of buckling-restrained braced frames", Struct., 25, 99-115. https://doi.org/10.1016/j.istruc.2020.03.004.
  2. Addala, M.B., Bhalla, S. and Madan, A. (2022), "Performance based design of a new hybrid passive energy dissipation device for vibration control of reinforced concrete frames subjected to broad-ranging earthquake ground excitations", Adv. Struct. Eng., 25(4), 895.912. https://doi.org/10.1177/13694332211052350.
  3. Alcocer, S.M., Cesin, J., Flores, L., Hernandez, O., Meli, R., Tena, A. and Vasconcelos, D. (2003), "The New Mexico City building code requirements for design and construction of masonry structures", Proceedings of the 9th North American Masonry Conference, South Carolina, USA,
  4. Azhdari, M., Mahmoodzadeh, A. and Khishe, M. (2021), "Digital image watermarking using the combination of genetic algorithm and spread spectrum method in the field of discrete cosine transform", Iran. J. Marine Sci. Technol., 25(1), 14-33. https://www.magiran.com/paper/2272568?lang=en.
  5. Babaei, M. and Sanaei, E. (2016), "Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization", Front. Struct. Civil Eng., 10(4), 472-480. https://doi.org/10.1007/s11709-016-0368-4.
  6. Barbosa, H.J. and Lemonge, A.C. (2008), "An adaptive penalty method for genetic algorithms in constrained optimization problems", INTECH Open Access Publisher.
  7. Boscardin, J.T., Yepes, V. and Kripka, M. (2019), "Optimization of reinforced concrete building frames with automated grouping of columns", Automat. Constr., 104, 331-340. https://doi.org/10.1016/j.autcon.2019.04.024.
  8. Chen, C.M., Chen, Y.P. and Zhang, Q. (2009), "Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization", 2009 IEEE Congress on Evolutionary Computation.
  9. Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022), "Permeability prediction model modified on kozeny-carman for building foundation of clay soil", Buildings, 12(11), 1798. https://doi.org/10.3390/buildings12111798.
  10. Cheng, Y. and Fu, L.Y. (2022), "Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression", East China. J. Petroleum Sci. Eng., 215, 110654. https://doi.org/10.1016/j.petrol.2022.110654.
  11. Choi, H. and Kim, J. (2006), "Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum", Eng. Struct., 28(2), 304-311. https://doi.org/10.1016/j.engstruct.2005.08.008.
  12. Choi, S.W., Park, S.W. and Park, H.S. (2017), "Multi-objective design model for retrofit of reinforced concrete frames with infilled walls using FRP bracings", Constr. Build. Mater., 140, 454-467. https://doi.org/10.1016/j.conbuildmat.2017.02.154.
  13. Deb, S., Abdelminaam, D.S., Said, M. and Houssein, E.H. (2021), "Recent methodology-based gradient-based optimizer for economic load dispatch problem", IEEE Access, 9, 44322-44338. https://doi.org/10.1109/ACCESS.2021.3066329.
  14. Dhiman, G. (2021). "SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications", Knowledge-based Syst., 222, 106926. https://doi.org/10.1016/j.knosys.2021.106926.
  15. Fang, B., Hu, Z., Shi, T., Liu, Y., Wang, X., Yang, D., Zhu, K., Zhao, X. and Zhao, Z. (2022), "Research progress on the properties and applications of magnesium phosphate cement", Ceram. Int., https://doi.org/10.1016/j.ceramint.2022.11.078.
  16. Gharehbaghi, S. and Khatibinia, M. (2015), "Optimal seismic design of reinforced concrete structures under time-history earthquake loads using an intelligent hybrid algorithm", Earthq. Eng. Eng. Vib., 14(1), 97-109. https://doi.org/10.1007/s11803-015-0009-2.
  17. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988.
  18. Guerrero, H., Ji, T., Teran-Gilmore, A. and Escobar, J.A. (2016), "A method for preliminary seismic design and assessment of low-rise structures protected with Buckling-Restrained Braces", Eng. Struct., 123, 141-154. https://doi.org/10.1016/j.engstruct.2016.05.015.
  19. Han, Y., Xu, X., Zhao, Y., Wang, X., Chen, Z. and Liu, J. (2022), "Impact of consumer preference on the decision-making of prefabricated building developers", J. Civil Eng. Manage., 28(3), 166-176. https://doi.org/10.3846/jcem.2022.15777.
  20. Han, Y., Yan, X. and Piroozfar, P. (2022), "An overall review of research on prefabricated construction supply chain management", Eng. Constr. Arch. Manage., https://doi.org/10.1108/ECAM-07-2021-0668.
  21. Hu, T., Khishe, M., Mohammadi, M., Parvizi, G.R., Karim, S.H.T. and Rashid, T.A. (2021), "Real‑time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm", Biomed. Signal Process. Control, 68, 102764. https://doi.org/10.1016/j.bspc.2021.102764.
  22. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  23. Huang, S., Lyu, Y., Sha, H. and Xiu, L. (2021), "Seismic performance assessment of unsaturated soil slope in different groundwater levels", Landslides, 18(8), 2813-2833. https://doi.org/10.1007/s10346-021-01674-w.
  24. Huang, Y., Zhang, W. and Liu, X. (2022), "Assessment of diagonal macrocrack-induced debonding mechanisms in frp-strengthened rc beams", J. Compos. Constr., 26(5), 04022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255.
  25. Kaidi, W., Khishe, M. and Mohammadi, M. (2022), "Dynamic levy flight chimp optimization", Knowledge-based Syst., 235, 107625. https://doi.org/10.1016/j.knosys.2021.107625.
  26. Karegar, M., Bidgoli, M.R. and Mazaheri, H. (2022), "Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects", Steel Compos. Struct., 43(1), 129-137. https://doi.org/10.12989/scs.2022.43.1.129.
  27. Kaur, M., Kaur, R., Singh, N. and Dhiman, G. (2021), "SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications", Eng. Comput., 38, 975-1003. https://doi.org/10.1007/s00366-020-01233-2.
  28. Kaveh, A. and Ghazaan, M.I. (2017), "A new meta-heuristic algorithm: vibrating particles system", Scientia Iranica., Transaction A Civil Eng., 24(2), 551. https://doi.org/10.24200/sci.2017.2417.
  29. Kersting, R.A., Fahnestock, L.A. and Lopez, W.A. (2015), "Seismic design of steel buckling-restrained braced frames", NIST GCR, 15-917.
  30. Khishe, M. and Mosavi, M.R. (2020), "Chimp optimization algorithm", Expert Syst. Appl., 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338.
  31. Khishe, M., Nezhadshahbodaghi, M., Mosavi, M.R. and Martin, D. (2021), "A weighted chimp optimization algorithm", IEEE Access, 9, 158508-158539, https://doi.org/10.1109/ACCESS.2021.3130933.
  32. Lee, C. and Ahn, J. (2003), "Flexural design of reinforced concrete frames by genetic algorithm", J. Struct. Eng., 129(6), 762-774. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(762).
  33. Leyva, H., Bojorquez, J., Bojorquez, E., Reyes-Salazar, A., Carrillo, J. and Lopez-Almansa, F. (2021), "Multi-objective seismic design of BRBs-reinforced concrete buildings using genetic algorithms", Struct. Multidiscipl. Optimiz., 64(4), 2097-2112. https://doi.org/10.1007/s00158-021-02965-5.
  34. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
  35. Li, J., Zhou, L., Li, S., Lin, G. and Ding, Z. (2023), "Soil-structure interaction analysis of nuclear power plant considering three-dimensional surface topographic irregularities based on automatic octree mesh", Eng. Struct., 275, 115161. https://doi.org/10.1016/j.engstruct.2022.115161.
  36. Li, Y.W., Wang, Y.Z. and Wang, Y.B. (2022), "Application of seismic resilient energy-dissipative rocking columns with HSS tension braces in steel frames", Eng. Struct., 253, 113812. https://doi.org/10.1016/j.engstruct.2021.113812.
  37. Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S. (2004), "Evaluation of comprehensive learning particle swarm optimizer", Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_34.
  38. Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S. (2006), "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions", Ieee Transact. Evolution. Comput., 10(3), 281-295. https://doi.org/10.1109/TEVC.2005.857610.
  39. Lu, L. (2022). "Application of buckling-restrained braces in the seismic control of suspension bridges", Earthq. Eng. Eng. Vib., 21, 543-557. https://doi.org/10.1007/s11803-022-2086-3.
  40. Mirjalili, S. (2019). "Genetic algorithm", In Evolutionary algorithms and neural networks, Springer.
  41. Mirjalili, S. and Lewis, A. (2015), "Novel frameworks for creating robust multi-objective benchmark problems", Inform. Sci., 300, 158-192. https://doi.org/10.1016/j.ins.2014.12.037.
  42. Pashaei, E. and Pashaei, E. (2022), "An efficient binary chimp optimization algorithm for feature selection in biomedical data classification", Neural Comput. Appl., 34, 6427-6451. https://doi.org/10.1007/s00521-021-06775-0.
  43. Saffari, A., Zahiri, S.H., Khishe, M. and Mosavi, S.M. (2020), "Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition", 1, 1-13. magiran.com/p2419140. https://doi.org/10.22920/PNIE.2020.1.1.1
  44. Shi, T., Liu, Y., Zhao, X., Wang, J., Zhao, Z., Corr, D.J. and Shah, S.P. (2022), "Study on mechanical properties of the interfacial transition zone in carbon nanofiber-reinforced cement mortar based on the PeakForce tapping mode of atomic force microscope", J. Build. Eng., 61, 105248. https://doi.org/10.1016/j.jobe.2022.105248.
  45. Tapao, A. and Cheerarot, R. (2017), "Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frames", Eng. Struct., 151, 802-820. https://doi.org/10.1016/j.engstruct.2017.08.059.
  46. Teran-Gilmore, A. and Ruiz-Garcia, J. (2011), "Comparative seismic performance of steel frames retrofitted with buckling-restrained braces through the application of force-based and displacement-based approaches", Soil Dynam. Earthq. Eng., 31(3), 478-490. https://doi.org/10.1016/j.soildyn.2010.11.003.
  47. Wang, G., Zhao, B., Wu, B., Wang, M., Liu, W., Zhou, H., Zhang, C., Wang, Y., Han, Y. and Xu, X. (2022), "Research on the Macro-Mesoscopic response mechanism of multisphere approximated heteromorphic tailing particles", Lithosphere, 2022(Special 10). https://doi.org/10.2113/2022/1977890.
  48. Wang, G., Zhao, B., Wu, B., Zhang, C. and Liu, W. (2022), "Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases", Int. J. Mining Sci. Technol., https://doi.org/10.1016/j.ijmst.2022.07.002.
  49. Wang, J., Khishe, M., Kaveh, M. and Mohammadi, H. (2021), "Binary chimp optimization algorithm (bchoa): a new binary meta-heuristic for solving optimization problems", Cogn. Comput., 13(5), 1297-1316. https://doi.org/10.1007/s12559-021-09933-7.
  50. Wolpert, D.H. and Macready, W.G. (1997), "No free lunch theorems for optimization", Ieee Transact. Evolution. Comput., 1(1), 67-82. https://doi.org/10.1109/4235.585893.
  51. Zayed, M.E., Zhao, J., Li, W., Elsheikh, A.H., Abd Elaziz, M., Yousri, D., Zhong, S. and Mingxi, Z. (2021), "Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model", Solar Energy, 222, 1-17. https://doi.org/10.1016/j.solener.2021.03.087.
  52. Zhan, C., Dai, Z., Soltanian, M.R. and de Barros, F.P. (2022), "Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework", Water Resour. Res., e2022WR033241. https://doi.org/10.1029/2022WR033241.
  53. Zhang, C., Mousavi, A.A., Masri, S.F., Gholipour, G., Yan, K. and Li, X. (2022), "Vibration feature extraction using signal processing techniques for structural health monitoring: A review", Mech. Syst. Signal Process., 177, 109175. https://doi.org/10.1016/j.ymssp.2022.109175.
  54. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 41, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094.
  55. Zhang, Z., Liang, G., Niu, Q., Wang, F., Chen, J., Zhao, B. and Ke, L. (2022), "A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures", Qual. Reliability Eng. Int., 38(7), 3710-3725. https://doi.org/10.1002/qre.3168.