DOI QR코드

DOI QR Code

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan (Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University) ;
  • Zhenghao Ding (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Jun Li (Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University) ;
  • Hong Hao (Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University)
  • 투고 : 2022.08.26
  • 심사 : 2023.02.02
  • 발행 : 2023.04.25

초록

This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

키워드

과제정보

The first author disclosed receipt of the financial support by China Scholarship Council Grant No.201806380151. The corresponding author acknowledges the support from Australian Research Council Discovery project DP210103631, "AI Assisted Probabilistic Structural Health Monitoring with Uncertain Data".

참고문헌

  1. Baqersad, J., Niezrecki, C. and Avitabile, P. (2015), "Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique", J. Sound Vib., 352, 16-29. https://doi.org/10.1016/j.jsv.2015.04.026
  2. Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L. (2008), "Speeded-Up Robust Features (SURF)", Comput. Vision Image Und., 110(3), 346-359. https://doi.org/10.1016/j.cviu.2007.09.014
  3. Brest, J. and Maucec, M. (2008), "Population size reduction for the differential evolution algorithm", Appl. Intell., 29, 228-247. https://doi.org/10.1007/s10489-007-0091-x
  4. Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V. (2006), "Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems", IEEE Transact. Evolut. Comput., 10(6), 646-657. https://doi.org/10.1109/TEVC.2006.872133
  5. Cawley, P. and Adams, R.D. (1979), "The location of defects in structures from measurements of natural frequencies", J. Strain Anal. Eng., 14(2), 49-57. https://doi.org/10.1243/03093247v142049
  6. Chen, Z.P. and Yu, L. (2017), "A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function", Struct. Eng. Mech., Int. J., 63(6), 825-835. https://doi.org/10.12989/sem.2017.63.6.825
  7. Chen, F., Chen, X., Xie, X., Feng, X. and Yang, L. (2013), "Full-field 3D measurement using multi-camera digital image correlation system", Opt. Laser Eng., 51(9), 1044-1052. https://doi.org/10.1016/j.optlaseng.2013.03.001
  8. Das, S. and Suganthan, P.N. (2011), "Differential evolution: A survey of the state-of-the-art", IEEE Transact. Evolut. Comput., 15(1), 4-31. https://doi.org/10.1109/TEVC.2010.2059031
  9. Ding, Z., Li, J. and Hao, H. (2019), "Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference", Mech. Syst. Signal Pr., 132, 211-231. https://doi.org/10.1016/j.ymssp.2019.06.029
  10. Feng, D. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection - A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
  11. Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
  12. Hao, H., Bi, K., Chen, W., Pham, T.M. and Li, J. (2023), "Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures", Eng. Struct., 277, 115477. ttps://doi.org/10.1016/j.engstruct.2022.115477
  13. Harris, C. and Stephens, M. (1988), "A combined corner and edge detector", Proceedings of the 4th Alvey Vision Conference, Manchester, UK, September. 
  14. Helfrick, M.N., Niezrecki, C., Avitabile, P. and Schmidt, T. (2011), "3D digital image correlation methods for full-field vibration measurement", Mech. Syst. Signal Pr., 25(3), 917-927. https://doi.org/10.1016/j.ymssp.2010.08.013
  15. Hou, R., Xia, Y., Bao, Y. and Zhou, X. (2018), "Selection of regularization parameter for l1-regularized damage detection", J. Sound Vib., 423, 141-160. https://doi.org/10.1016/j.jsv.2018.02.064
  16. Kuddus, M.A., Li, J., Hao, H., Li, C. and Bi, K. (2019), "Target-free vision-based technique for vibration measurements of structures subjected to out-of-plane movements", Eng. Struct., 190, 210-222. https://doi.org/10.1016/j.engstruct.2019.04.019
  17. Lee, J. (2009), "Identification of multiple cracks in a beam using natural frequencies", J. Sound Vib., 320(3), 482-490. https://doi.org/10.1016/j.jsv.2008.10.033
  18. Loop, C. and Zhang, Z. (1999), "Computing Rectifying Homographies for Stereo Vision", Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1. https://doi.org/10.1109/CVPR.1999.786928
  19. Lowe, D.G. (1999), "Object recognition from local scale-invariant features", Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, September.
  20. Lu, Z.R. and Law, S.S. (2007), "Features of dynamic response sensitivity and its application in damage detection", J. Sound Vib., 303(1-2), 305-329. https://doi.org/10.1016/j.jsv.2007.01.021
  21. Lu, Z.-R. and Wang, L. (2017), "An enhanced response sensitivity approach for structural damage identification: convergence and performance", Int. J. Numer. Meth. Eng., 111(13), 1231-1251. https://doi.org/10.1002/nme.5502
  22. Lucas, B. and Kanade, T. (1981), "An Iterative Image Registration Technique with an Application to Stereo Vision", Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, B.C., Canada, August.
  23. Narazaki, Y., Gomez, F., Hoskere, V., Smith, M.D. and Spencer Jr, B.F. (2020), "Efficient development of vision-based dense three-dimensional displacement measurement algorithms using physics-based graphics models", Struct. Health Monitor., 20(4), 1841-1863. https://doi.org/10.1177/1475921720939522
  24. Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Measure. Sci. Technol., 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001
  25. Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878. https://doi.org/10.1006/mssp.1999.1249
  26. Peng, F., Tang, K., Chen, G. and Yao, X. (2009), "Multi-start JADE with knowledge transfer for numerical optimization", Proceedings of 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, May.
  27. Qin, A.K., Huang, V.L. and Suganthan, P.N. (2009), "Differential evolution algorithm with strategy adaptation for global numerical optimization", IEEE Transact. Evolut. Comput., 13(2), 398-417. https://doi.org/10.1109/TEVC.2008.927706
  28. Reu, P.L., Rohe, D.P. and Jacobs, L.D. (2017), "Comparison of DIC and LDV for practical vibration and modal measurements", Mech. Syst. Signal Pr., 86, 2-16. https://doi.org/10.1016/j.ymssp.2016.02.006
  29. Rosten, E. and Drummond, T. (2005), "Fusing points and lines for high performance tracking", Proceedings of IEEE International Conference on Computer Vision, Bejing, China, October.
  30. Shao, Y., Li, L., Li, J., An, S. and Hao, H. (2021), "Computer vision based target-free 3D vibration displacement measurement of structures", Eng. Struct., 246, 113040. https://doi.org/10.1016/j.engstruct.2021.113040
  31. Shi, J. and Tomasi, C. (1994), "Good features to track", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June.
  32. Storn, R. (1996), "On the usage of differential evolution for function optimization", Proceedings of North American Fuzzy Information Processing, Berkeley, California, USA, June.
  33. Storn, R. and Price, K. (1997), "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim., 11(4), 341-359. https://doi.org/10.1023/A:1008202821328
  34. Tan, D., Li, J., Hao, H. and Nie, Z. (2023), "Target-free vision-based approach for modal identification of a simply-supported bridge", Eng. Struct., 279, 115586. https://doi.org/10.1016/j.engstruct.2022.115586
  35. Tanabe, R. and Fukunaga, A. (2013), "Success-history based parameter adaptation for Differential Evolution", Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cacun, Mexico, June.
  36. Tanabe, R. and Fukunaga, A.S. (2014), "Improving the search performance of SHADE using linear population size reduction", Proceedings of 2014 IEEE Congress on Evolutionary Computation, Beijing, China, July.
  37. Tikhonov, A.N. (1963), "On the solution of ill-posed problems and the method of regularization", Dokl. Akad. Nauk SSSR, 151(3), 501-504.
  38. Titurus, B. and Friswell, M.I. (2008), "Regularization in model updating", Int. J. Numer. Meth. Eng., 75(4), 440-478. https://doi.org/10.1002/nme.2257
  39. Tomasi, C. and Kanade, T. (1999), "Shape and Motion from Image Streams: a Factorization Method-Part 3 Detection and Tracking of Point Features", Int. J. Comput. Vision, 9(2), 137-54. https://doi.org/10.1007/BF00129684
  40. Trajkovic, M. and Hedley, M. (1998), "Fast corner detection", Image Vision Comput., 16(2), 75-87. https://doi.org/10.1016/S0262-8856(97)00056-5
  41. Vlasic, I., Ðurasevic, M. and Jakobovic, D. (2019), "Improving genetic algorithm performance by population initialisation with dispatching rules", Comput. Ind. Eng., 137, 106030. https://doi.org/10.1016/j.cie.2019.106030
  42. Xu, Z., Zhang, H., Wang, Y., Chang, X. and Liang, Y. (2010), "L1/2 regularization", Science China Information Sciences, 53(6), 1159-1169. https://doi.org/10.1007/s11432-010-0090-0
  43. Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer Jr, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/stc.1850
  44. Zepeng, C. and Yu, L. (2017), "A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function", Struct. Eng. Mech., Int. J., 63, 825-835. https://doi.org/10.12989/sem.2017.63.6.825
  45. Zhang, Z. (2003), "Single-view geometry of a rectangle with application to whiteboard image rectification", Microsoft Research; Redmond, WA, USA.
  46. Zhang, J. and Sanderson, A.C. (2009), "JADE: adaptive differential evolution with optional external archive", IEEE Transact. Evolut. Comput., 13(5), 945-958. https://doi.org/10.1109/TEVC.2009.2014613
  47. Zhang, C.D. and Xu, Y.L. (2016), "Comparative studies on damage identification with Tikhonov regularization and sparse regularization", Struct. Control Health Monitor., 23(3), 560-579. https://doi.org/10.1002/stc.1785
  48. Zhong, S. and Oyadiji, S.O. (2011), "Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data", Comput. Struct., 89(1-2), 127-148. https://doi.org/10.1016/j.compstruc.2010.08.008