DOI QR코드

DOI QR Code

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou (Department of Civil Engineering, National Taiwan University) ;
  • Chia-Ming Chang (Department of Civil Engineering, National Taiwan University)
  • 투고 : 2022.09.13
  • 심사 : 2023.02.08
  • 발행 : 2023.04.25

초록

Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

키워드

과제정보

The structural health monitoring data of this research are obtained from the organizers of the 2nd International Competition for Structural Health Monitoring (IC-SHM), 2021 (http://sstl.cee.illinois.edu/ic-shm2021/).

참고문헌

  1. Abdel-Aziz, Y.I. and Karara, H.M. (1971), "Direct linear transformation from comparator coordinates into object-space coordinates in close-range photogrammetry", Proceedings of the ASP/UI Symposium on Close-Range Photogrammetry, American Society of Photogrammetry, Falls Church, VA, USA, pp. 1-18. 
  2. Brincker, R., Zhang, L.M. and Andersen, P. (2000), "Modal identification from ambient responses using Frequency Domain Decomposition", Proceedings of the 18th International Modal Analysis Conference, San Antonio, TX, USA. 
  3. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500 
  4. Cha, Y.J., Chen, J.G. and Buyukozturk, O. (2017), "Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters", Eng. Struct., 132, 300-313. https://doi.org/10.1016/j.engstruct.2016.11.038 
  5. Chou, J.Y. and Chang, C.M. (2021), "Image motion extraction of structures using computer vision techniques: A comparative study", Sensors, 21, 6248. https://doi.org/10.3390/s21186248 
  6. Derpanis, K.G. (2004), "The harris corner detector", York University, Toronto, ON, Canada. 
  7. Dong, C.Z., Celik, O., Necati Catbas, F., O'Brien, E.J. and Taylor, S. (2020), "Structural displacement monitoring using deep learning-based full field optical flow methods", Struct. Infrastruct. Eng., 16, 51-71. https://doi.org/10.1080/15732479.2019.1650078 
  8. Du, W., Lei, D., Bai, P., Zhu, F. and Huang, Z. (2020), "Dynamic measurement of stay-cable force using digital image techniques", Measurements, 151, 107211. https://doi.org/10.1016/j.measurement.2019.107211 
  9. Farrar, C.R., Doebling, S.W. and Nix, D.A. (2001), "Vibration-based structural damage identification", Philosoph. Transact. Royal Soc. A, 359, 131-149. https://doi.org/10.1098/rsta.2000.0717 
  10. Feng, M., Fukuda, Y., Mizuta, M. and Ozer, E. (2015), "Citizen Sensors for SHM: Use of accelerometer data from smartphones", Sensors, 15, 2980-2998. https://doi.org/10.3390/s150202980 
  11. Hoskere, V., Narazaki, Y. and Spencer Jr, B.F. (2019), "Learning to detect important physics-based graphics models", Proceedings of the 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (ISHMII), St. Louis, MO, USA. 
  12. Li, J., Hao, H., Fan, K. and Brownjon, J. (2014), "Development and application of a relative displacement sensor for structural health monitoring of composite bridges", Struct. Control Health Monit., 22, 726-742. https://doi.org/10.1002/stc.1714 
  13. Liu, P.L. (1995), "Identification and damage detection of trusses using modal data", J. Struct. Eng., 121(4), 599-608. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(599) 
  14. Luu, L., Wang, Z., Vo, M., Hoang, T. and Ma, J. (2011), "Accuracy enhancement of digital image correlation with B-spline interpolation", Opt. Lett., 36, 3070-3072. https://doi.org/10.1364/OL.36.003070 
  15. MATLAB and Computer Vision Toolbox Release (2020), The MathWorks, Inc., Natick, Massachusetts, United States.
  16. Narazaki, Y., Gomez, F., Hoskere, V., Smith, M.D. and Spencer Jr, B.F. (2020), "Efficient development of vision-based dense three-dimensional displacement measurement algorithms using physics-based graphics models", Struct. Health Monit., 147592172093952. https://doi.org/10.1177/1475921720939522 
  17. Nievergely, J. (2000), "Exhaustive search, combinatorial optimization and enumeration: exploring the potential of raw computing power", In: SOFSEM2000: Theory and Practice of Informatics (Proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics, Milovy, Czech Republic, November-December), pp. 18-35. 
  18. Pastor, M., Binda, M. and Harcarik, T. (2012), "Modal assurance criterion", Procedia Eng., 48, 543-548. https://doi.org/10.1016/j.proeng.2012.09.551 
  19. Patsias, S. and Staszewskly, W.J. (2002), "Damage detection using optical measurements and wavelets", Struct. Health Monit., 1(1), 5-22. https://doi.org/10.1177/147592170200100102 
  20. Paz, M. and Kim, Y.H (2019), Structural Dynamics, Springer. ISBN 978-3-319-94743-3 
  21. Ritto, T.G. and Rochinha, F.A. (2021), "Digital twin, physics-based model, and machine learning applied to damage detection in structures", Mech. Syst. Signal Process., 155, 107614. https://doi.org/10.1016/j.ymssp.2021.107614 
  22. Shi, J. and Tomasi, C. (1994), "Good features to track", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June, pp. 593-600. https://doi.org/10.1109/CVPR.1994.323794 
  23. Strat, T.M. (1987), "Recovering the camera parameters from a transformation matrix", In: Readings in Computer Vision, Morgan Kaufmann, pp. 93-100. https://doi.org/10.1016/B978-0-08-051581-6.50017-9 
  24. Sukthankar, R., Stockton, R. and Mullin, M. (1999), "Automatic keystone correction", Provisional U.S. Patent Filing, 614. 
  25. Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H.W. and Orteu, J.J. (2008), "The effect of out-of-plane motion on 2D and 3D digital image correlation measurements", Opt. Lasers Eng., 46, 746-757. https://doi.org/10.1016/j.optlaseng.2008.05.005r 
  26. Tomasi, C. and Kanade, T. (1991), "Detection and Tracking of Point Features", Technical Report: CMU-CS-91132, Carnegie Mellon University, Pittsburgh, PA, USA. 
  27. Wall, M.E., Rechtsteiner, A. and Rocha, L.M. (2003), "Singular value decomposition and principal component analysis", In: A Practical Approach to Microarray Data Analysis, Kluwer: Norwell, MA, USA, pp. 91-109. https://doi.org/10.1007/0-306-47815-3_5 
  28. Whitley, D. (1994), "A genetic algorithm tutorial", Stat. and Comput., 4, 65-85. https://doi.org/10.1007/BF00175354 
  29. Xu, K. and Mita, A. (2021), "Absolute displacement-based formulation for peak inter-story drift identification of shear structures using only one accelerometer", Sensors, 21, 3629. https://doi.org/10.3390/s21113629 
  30. Ye, C., Butler, L., Calka, B., Iangurazov, M., Lu, Q., Gregory, A., Girolami, M. and Middleton, C. (2019), "A digital twin of bridges for structural heath monitoring", Proceedings of the 12th International Workshop on Structural Health Monitoring. 
  31. Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer Jr, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monit., 23, 1405-1416. https://doi.org/10.1002/stc.1850 
  32. Zhu, J., Lu, Z. and Zhang, C. (2020), "A marker-free method for structural dynamic displacement measurement based on optical flow", Struct. and Infrastruct. Eng., 18(1), 84-96. https://doi.org/10.1080/15732479.2020.1835999