과제정보
The authors would like to thank the organization of the IC-SHM 2021: ANCRiSST, University of Illinois at Urbana-Champaign, Harbin Institute of Technology, Zhejiang University, and University of Houston for providing the valuable data used in this study.
참고문헌
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Computer Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Bao, Y. and Li, H. (2021), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 20(4), 1353-1372. https://doi.org/10.1177/1475921720972416
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Beckman, G.H., Polyzois, D. and Cha, Y.J. (2019), "Deep learning-based automatic volumetric damage quantification using depth camera", Automat. Constr., 99, 114-124. https://doi.org/10.1016/j.autcon.2018.12.006
- Berman, M., Triki, A.R. and Blaschko, M.B. (2018), "The lovasz-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413-4421.
- Bermanmaxim. Bermanmaxim/LovaszSoftmax: Code for the lovasz-softmax loss (CVPR 2018), Retrieved January 28, 2022. https://github.com/bermanmaxim/LovaszSoftmax
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chen, F.C. and Jahanshahi, M.R. (2017), "NB-CNN: Deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion", IEEE Transact. Indust. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), pp. 801-818.
- Chen, X., Yuan, Y., Zeng, G. and Wang, J. (2021), "Semi-supervised semantic segmentation with cross pseudo supervision", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613-2622.
- Cheng, H.D., Chen, J.R., Glazier, C. and Hu, Y.G. (1999), "Novel approach to pavement cracking detection based on fuzzy set theory", J. Computer Civil Eng., 13(4), 270-280. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:4(270)
- Cheng, H.D., Shi, X.J. and Glazier, C. (2003), "Real-time image thresholding based on sample space reduction and interpolation approach", J. Computer Civil Eng., 17(4), 264-272. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(264)
- Choi, W. and Cha, Y.J. (2019), "SDDNet: Real-time crack segmentation", IEEE Transact. Industr. Electron., 67(9), 8016-8025. https://doi.org/10.1109/TIE.2019.2945265
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. (2009), "Imagenet: A large-scale hierarchical image database", Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June, pp. 248-255. https://doi.org/10.1109/CVPR.2009.5206848
- Dong, C., Li, L., Yan, J., Zhang, Z., Pan, H. and Catbas, F.N. (2021), "Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder-decoder network", Sensors, 21(12), 4135. https://doi.org/10.3390/s21124135
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Fujita, Y. and Hamamoto, Y. (2011), "A robust automatic crack detection method from noisy concrete surfaces", Mach. Vis. Applicat., 22(2), 245-254. https://doi.org/10.1007/s00138-009-0244-5
- Gao, Y. and Mosalam, K.M. (2018), "Deep transfer learning for image-based structural damage recognition", Comput.-Aided Civil Infrastr. Eng., 33(9), 748-768. https://doi.org/10.1111/mice.12363
- Ghosh Mondal, T., Jahanshahi, M.R., Wu, R.T. and Wu, Z.Y. (2020), "Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance", Struct. Control Health Monitor., 27(4), e2507. https://doi.org/10.1002/stc.2507
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Transact. Pattern Anal. Mach. Intell., 37(9), 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr, B.F. (2020), "MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure", J. Civil Struct. Health Monitor., 10, 757-773. https://doi.org/10.1007/s13349-020-00409-0
- Hoskere, V., Narazaki, Y. and Spencer, B.F. (2022), "Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds", Sensors, 22(2), 532. https://doi.org/10.3390/s22020532
- Hu, J., Shen, L. and Sun, G. (2018), "Squeeze-and-excitation networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132-7141.
- Ji, A., Xue, X., Wang, Y., Luo, X. and Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automat. Constr., 114, 103176. https://doi.org/10.1016/j.autcon.2020.103176
- Ke, Z., Qiu, D., Li, K., Yan, Q. and Lau, R.W. (2020), "Guided collaborative training for pixel-wise semi-supervised learning", Proceedings of European Conference on Computer Vision, pp. 429-445. https://doi.org/10.1007/978-3-030-58601-0_26
- Lau, S.L., Chong, E.K., Yang, X. and Wang, X. (2020), "Automated pavement crack segmentation using u-net-based convolutional neural network", IEEE Access, 8, 114892-114899. https://doi.org/10.1109/ACCESS.2020.3003638
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988.
- Liu, Y., Yao, J., Lu, X., Xie, R. and Li, L. (2019), "DeepCrack: A deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, 338, 139-153. https://doi.org/10.1016/j.neucom.2019.01.036
- Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V.C.S. and Ding, L. (2020), "Automated pavement crack detection and segmentation based on two-step convolutional neural network", Comput.-Aided Civil Infrastr. Eng., 35(11), 1291-1305. https://doi.org/10.1111/mice.12622
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June, pp. 3431-3440.
- Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection and classification using deep neural networks with smartphone images", Comput.-Aided Civil Infrastr. Eng., 33(12), 1127-1141. https://doi.org/10.1111/mice.12387
- Narazaki, Y., Hoskere, V., Eick, B.A., Smith, M.D. and Spencer, B.F. (2019), "Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models", Smart Struct. Syst., Int. J., 24(6), 709-721. https://doi.org/10.12989/sss.2019.24.6.709
- Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B.F. and Fujino, Y. (2021), "Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts", Mech. Syst. Signal Process., 160, 107850. https://doi.org/10.1016/j.ymssp.2021.107850
- Ouali, Y., Hudelot, C. and Tami, M. (2020), "Semi-supervised semantic segmentation with cross-consistency training", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12674-12684.
- Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E. (2016), "ENet: A deep neural network architecture for real-time semantic segmentation", arXiv preprint arXiv:1606.02147. https://doi.org/10.48550/arXiv.1606.02147
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, October, pp. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
- Sajedi, S.O. and Liang, X. (2021), "Uncertainty-assisted deep vision structural health monitoring", Comput.-Aided Civil Infrastr. Eng., 36(2), 126-142. https://doi.org/10.1111/mice.12580
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Tang, W., Wu, R.-T. and Jahanshahi, M.R. (2022), "Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion", Smart Struct. Syst., Int. J., 29(1), 221-235. https://doi.org/10.12989/sss.2022.29.1.221
- Xue, Y. and Li, Y. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Comput.-Aided Civil Infrastr. Eng., 33(8), 638-654. https://doi.org/10.1111/mice.12367
- Yamaguchi, T. and Hashimoto, S. (2010), "Fast method for crack detection surface concrete large-size images using percolation-based image processing", Mach. Vis. Appl., 21, 797-809. https://doi.org/10.1007/s00138-009-0189-8
- Yang, Q. and Ji, X. (2021), "Automatic pixel-level crack detection for civil infrastructure using UNet++ and deep transfer learning", IEEE Sensors J., 21(17), 19165-19175. https://doi.org/10.1109/JSEN.2021.3089718
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Zhang, X., Rajan, D. and Story, B. (2019), "Concrete crack detection using context-aware deep semantic segmentation network", Comput.-Aided Civil Infrastr. Eng., 34(11), 951-971. https://doi.org/10.1111/mice.12477
- Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. and Liang, J. (2018), "Unet++: A nested u-net architecture for medical image segmentation", In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3-11.
- Zou, Y., Zhang, Z., Zhang, H., Li, C.L., Bian, X., Huang, J.B. and Pfister, T. (2020), "Pseudoseg: Designing pseudo labels for semantic segmentation", arXiv preprint arXiv:2010.09713. https://doi.org/10.48550/arXiv.2010.09713