참고문헌
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Agyemang, I.O., Zhang, X., Mensah, I.A., Mawuli, B.C., Agbley, B.L.Y. and Arhin, J.R. (2021), "Enhanced deep convolutional neural network for building component detection towards structural health monitoring", Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Yibin, China, August. https://doi.org/10.1109/PRAI53619.2021.9551102
- Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M. and Kalinin, A.A. (2020), "Albumentations: fast and flexible image augmentations", Information, 11(2), 125. https://doi.org/10.3390/info11020125
- Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017), "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges", J. Bridge Eng., 23(10), 04018078. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001291
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021), "An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale", Proceedings of 2021 International Conference on Learning Representations (ICLR).
- Guo, J., Wang, Q. and Li, Y. (2021), "Semi-supervised learning based on convolutional neural network and uncertainty filter for facade defects classification", Comput.-Aided Civil Infrastr. Eng., 36(3), 302-317. https://doi.org/10.1111/mice.12632
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778.
- He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J. and Li, M. (2019), "Bag of tricks for image classification with convolutional neural networks", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
- Hinton, G.E., Osindero, S. and Teh, Y.-W. (2006), "A fast learning algorithm for deep belief nets", Neural Computat., 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Hoskere, V., Narazaki, Y., Hoang, T. and Spencer Jr, B. (2017), "Vision-based structural inspection using multiscale deep convolutional neural networks", Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers, Urbana, IL, USA. https://doi.org/10.48550/arXiv.1805.01055
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr, B. (2020), "MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure", J. Civil Struct. Health Monitor., 10(5), 757-773. https://doi.org/10.1007/s13349-020-00409-0
- Hoskere, V., Narazaki, Y. and Spencer Jr, B.F. (2022), "Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds", Sensors, 22(2), 532. https://doi.org/10.3390/s22020532
- Hou, X., Zeng, Y. and Xue, J. (2020), "Detecting structural components of building engineering based on deep-learning method", J. Constr. Eng. Manag., 146(2), 04019097. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001751
- Hu, J., Shen, L. and Sun, G. (2018), "Squeeze-and-excitation networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132-7141.
- IC-SHM (2021), Structures and Artificial Intelligence Lab. Retrieved 2022/04/30 from https://sail.cive.uh.edu/ic-shm2021/
- Jahanshahi, M.R. and Masri, S.F. (2012), "Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures", Automat. Constr., 22, 567-576. https://doi.org/10.1016/j.autcon.2011.11.018
- Jegou, S., Drozdzal, M., Vazquez, D., Romero, A. and Bengio, Y. (2017), "The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11-19.
- Katharopoulos, A. and Fleuret, F. (2019), "Processing megapixel images with deep attention-sampling models", Proceedings of the 36th International Conference on Machine Learning, pp. 3282-3291.
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
- Li, L., Wang, Q., Zhang, G., Shi, L., Dong, J. and Jia, P. (2018), "A method of detecting the cracks of concrete undergo high-temperature", Constr. Build. Mater., 162, 345-358. https://doi.org/10.1016/j.conbuildmat.2017.12.010
- Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput.-Aided Civil Infrastr. Eng, 34(5), 415-430. https://doi.org/10.1111/mice.12425
- Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988.
- Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
- Liu, Y.F., Nie, X., Fan, J.S. and Liu, X.G. (2020), "Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction", Comput.-Aided Civil Infrastr. Eng., 35(5), 511-529. https://doi.org/10.1111/mice.12501
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B. (2021), "Swin transformer: Hierarchical vision transformer using shifted windows", arXiv preprint arXiv:2103.14030. pp. 10012-10022
- Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T. and Xie, S. (2022), "A convnet for the 2020s". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976-11986.
- Munawar, H.S., Hammad, A.W., Haddad, A., Soares, C.A.P. and Waller, S.T. (2021), "Image-based crack detection methods: A review", Infrastructures, 6(8), 115. https://doi.org/10.3390/infrastructures6080115
- Narazaki, Y., Hoskere, V., Hoang, T.A., Fujino, Y., Sakurai, A. and Spencer Jr, B.F. (2020), "Vision-based automated bridge component recognition with high-level scene consistency", Comput.-Aided Civil Infrastr. Eng., 35(5), 465-482. https://doi.org/10.1111/mice.12505
- Narazaki, Y., Hoskere, V., Chowdhary, G. and Spencer Jr, B.F. (2022), "Vision-based navigation planning for autonomous post-earthquake inspection of reinforced concrete railway viaducts using unmanned aerial vehicles", Automat. Constr., 137, 104214. https://doi.org/10.1016/j.autcon.2022.104214
- PapersWithCode (2022), Semantic Segmentation. https://paperswithcode.com/task/semantic-segmentation
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N. and Antiga, L. (2019), "Pytorch: An imperative style, high-performance deep learning library", Adv. Neural Inform. Process. Syst., 32, 8026-8037.
- Sajedi, S.O. and Liang, X. (2019), "A convolutional cost-sensitive crack localization algorithm for automated and reliable RC bridge inspection", In: Risk-Based Bridge Engineering, pp. 229-235.
- Sajedi, S.O. and Liang, X. (2021), "Uncertainty-assisted deep vision structural health monitoring", Comput.-Aided Civil Infrastr. Eng., 36(2), 126-142. https://doi.org/10.1111/mice.12580
- Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D. and Wang, Z. (2016), "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874-1883.
- Talab, A.M.A., Huang, Z., Xi, F. and HaiMing, L. (2016), "Detection crack in image using Otsu method and multiple filtering in image processing techniques", Optik, 127(3), 1030-1033. https://doi.org/10.1016/j.ijleo.2015.09.147
- Tan, M. and Le, Q. (2019), "Efficientnet: Rethinking model scaling for convolutional neural networks", International Conference on Machine Learning, pp. 6105-6114.
- Tang, W., Wu, R.-T. and Jahanshahi, M.R. (2022), "Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion", Smart Struct. Syst., Int. J., 29(1), 221-235. https://doi.org/10.12989/sss.2022.29.1.221
- Teng, S., Liu, Z., Chen, G. and Cheng, L. (2021), "Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network", Appl. Sci., 11(2), 813. https://doi.org/10.3390/app11020813
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017), "Attention is all you need", Adv. Neural Inform. Process. Syst.
- Wightman, R. (2019), PyTorch Image Models, GitHub. https://github.com/rwightman/pytorch-image-models
- Wu, Y., Qin, Y., Qian, Y., Guo, F., Wang, Z. and Jia, L. (2022), "Hybrid deep learning architecture for rail surface segmentation and surface defect detection", Comput.-Aided Civil Infrastr. Eng., 37(2), 227-244. https://doi.org/10.1111/mice.12710
- Yakubovskiy, P. (2020), Segmentation Models Pytorch. GitHub. https://github.com/qubvel/segmentation_models.pytorch
- Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civil Infrastr. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297
- Zhang, K., Cheng, H. and Zhang, B. (2018), "Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning", J. Comput. Civil Eng., 32(2), 04018001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736
- Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J. and Manmatha, R. (2020), "Resnest: Split-attention networks", arXiv preprint arXiv:2004.08955.
- Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J. and Manmatha, R. (2022), "Resnest: Split-attention networks", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736-2746.
- Zhang, Y., Qin, J., Park, D.S., Han, W., Chiu, C.-C., Pang, R., Le, Q.V. and Wu, Y. (2020), "Pushing the limits of semi-supervised learning for automatic speech recognition", arXiv preprint arXiv:2010.10504. https://doi.org/10.48550/arXiv.2010.10504
- Zheng, Y., Gao, Y., Lu, S. and Mosalam, K.M. (2022), "Multistage semisupervised active learning framework for crack identification, segmentation, and measurement of bridges", Comput.-Aided Civil Infrastr. Eng., 37(9), 1089-1108. https://doi.org/10.1111/mice.12851
- Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. and Liang, J. (2018), "Unet++: A nested u-net architecture for medical image segmentation", In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 3-11. https://doi.org/10.1007/978-3-030-00889-5_1
- Zhou, Z., Zhang, J. and Gong, C. (2022), "Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network", Comput.-Aided Civil Infrastr. Eng., 37(6), 762-780. https://doi.org/https://doi.org/10.1111/mice.12836