References
- Berman, M., Triki, A.R. and Blaschko, M.B. (2018), "The lovasz-softmax loss: A tractable surrogate for the opti- mization of the intersection-over-union measure in neural networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413-4421.
- Braun, T., Spiliopoulos, S., Veltman, C., Hergesell, V., Passow, A., Tenderich, G., Borggrefe, M. and Koerner, M.M. (2020), "Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography-a five-fold cross validation of accuracy", J. Electrocardiol., 59, 100-105. https://doi.org/10.1016/j.jelectrocard.2019.12.018
- Chen, F.-C. and Jahanshahi, M.R. (2017), "NB-CNN: Deep learning-based crack detection using convolutional neural network and naive bayes data fusion", IEEE Transact. Industr. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), pp. 801-818.
- Czerniawski, T. and Leite, F. (2020), "Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning", Adv. Eng. Inform., 45, 101131. https://doi.org/10.1016/j.aei.2020.101131
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), "ImageNet: A large-scale hierarchical image database." 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255.
- Ghosh Mondal, T., Jahanshahi, M.R., Wu, R.-T. and Wu, Z.Y. (2020), "Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance", Struct. Control Health Monitor., 27(4), e2507. https://doi.org/10.1002/stc.2507
- Gorka, J.G. and Armstrong, D.E. (2021), "Application of machine learning to estimate fireball characteristics and their uncertainty from infrared spectral data", Proceedings of Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVII, Vol. 11727, pp. 155-166.
- Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y. and He, K. (2017), "Accurate, large minibatch SGD: training imagenet in 1 hour", CoRR, abs/1706.02677. http://arxiv.org/abs/1706.02677
- He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask RCNN", Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969.
- He, F., Liu, T. and Tao, D. (2019), "Control batch size and learning rate to generalize well: Theoretical and empirical evidence", In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch'e-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/dc6a70712a252123c40d2adba6a11d84-Paper.pdf
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr, B. (2020), "Madnet: Multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure", J. Civil Struct. Health Monitor., 10(5), 757-773. https://doi.org/10.1007/s13349-020-00409-0
- Hoskere, V., Amer, F., Friedel, D., Yang, W., Tang, Y., Narazaki, Y., Smith, M.D., Golparvar-Fard, M. and Spencer Jr, B.F. (2021), "Instadam: Open-source platform for rapid semantic segmentation of structural damage", Appl. Sci., 11(2), 520. https://doi.org/10.3390/app11020520
- Hoskere, V., Narazaki, Y. and Spencer Jr, B.F. (2022), "Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds", Sensors, 22(2), 532. https://doi.org/10.3390/s22020532
- Hou, S., Dong, B., Wang, H. and Wu, G. (2020), "Inspection of surface defects on stay cables using a robot and transfer learning", Automat. Constr., 119, 103382. https://doi.org/10.1016/j.autcon.2020.103382
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
- Li, X., Xia, Y., Long, X., Li, Z. and Li, S. (2021), "Exploring text-transformers in AAAI 2021 shared task: Covid-19 fake news detection in English", In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 106-115.
- Lin, G., Milan, A., Shen, C. and Reid, I. (2017), "Refinenet: Multipath refinement networks for high-resolution semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925-1934.
- Mondal, T.G. and Jahanshahi, M.R. (2020), "Autonomous vision-based damage chronology for spatiotemporal con- dition assessment of civil infrastructure using unmanned aerial vehicle", Smart Struct. Syst., Int. J., 25(6), 733-749. https://doi.org/10.12989/sss.2020.25.6.733
- Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B.F. and Fujino, Y. (2021), "Synthetic environments for vision-based structural condition assessment of japanese high-speed railway viaducts", Mech. Syst. Signal Process., 160, 107850. https://doi.org/10.1016/j.ymssp.2021.107850
- Pan, Y. and Zhang, L. (2022), "Dual attention deep learning network for automatic steel surface defect segmentation", Comput.-Aided Civil Infrastr. Eng., 37(11), 1468-1487. https://doi.org/10.1111/mice.12792
- Pozzer, S., Rezazadeh Azar, E., Dalla Rosa, F. and Chamberlain Pravia, Z.M. (2021), "Semantic segmentation of defects in infrared thermographic images of highly damaged concrete structures", J. Perform. Constr. Facil., 35(1), 04020131. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
- Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K. and Dollar, P. (2020), "Designing network design spaces." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428-10436.
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
- Rubio, J.J., Kashiwa, T., Laiteerapong, T., Deng, W., Nagai, K., Escalera, S., Nakayama, K., Matsuo, Y. and Prendinger, H. (2019), "Multi-class structural damage segmentation using fully convolutional networks", Comput. Indust., 112, 103121. https://doi.org/10.1016/j.compind.2019.08.002
- Satria, A., Sitompul, O.S. and Mawengkang, H. (2021), "5-fold cross validation on supporting k-nearest neighbour accuration of making consimilar symptoms disease classification", Proceedings of 2021 International Conference on Computer Science and Engineering (IC2SE), Padang, Indonesia, November, pp. 1-5.
- Smith, L.N. (2017), "Cyclical learning rates for training neural networks", Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464-472.
- Smith, S.L., Kindermans, P. and Le, Q.V. (2018), "Don't decay the learning rate, increase the batch size", In: International Conference on Learning Representations (ICLR), abs/1711.00489. http://arxiv.org/abs/1711.00489
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Tang, W., Wu, R.-T. and Jahanshahi, M.R. (2022), "Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and bayesian data fusion", Smart Struct. Syst., Int. J., 29(1), 221-235. https://doi.org/10.12989/sss.2022.29.1.221
- Wang, N., Zhao, X., Zou, Z., Zhao, P. and Qi, F. (2020), "Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning", Comput.-Aided Civil Infrastr. Eng., 35(3), 277-291. https://doi.org/10.1111/mice.12488
- Xia, T., Yang, J. and Chen, L. (2022), "Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning", Automat. Constr., 133, 103992. https://doi.org/10.1016/j.autcon.2021.103992
- Yasuno, T., Michihiro, N. and Kazuhiro, N. (2020), "Per-pixel classification rebar exposures in bridge eye inspection", arXiv preprint arXiv:2004.12805.
- Zhou, S. and Song, W. (2021), "Crack segmentation through deep convolutional neural networks and heterogeneous image fusion", Automat. Constr., 125, 103605. https://doi.org/10.1016/j.autcon.2021.103605
- Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N. and Liang, J. (2018), "Unet++: A nested u-net architecture for medical image segmentation", In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3-11. https://doi.org/10.1007/978-3-030-00889-5_1