Acknowledgement
This research was supported in part by the Leavell Fellowship on Sustainable Built Environment at Stanford University.
References
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- ASCE (2021), Bridges-infrastructure report card.
- Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black- box images", Comput.-Aided Civil Infrastr. Eng., 34(8), 713-727. https://doi.org/10.1111/mice.12440
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Deng, J., Lu, Y. and Lee, V.C.S. (2020), "Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network", Comput.-Aided Civil Infrastr. Eng., 35(4), 373-388. https://doi.org/10.1111/mice.12497
- Dong, C.Z. and Catbas, F.N. (2021), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monitor., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr, B.F. (2018), "Towards automated post-earthquake inspections with deep learning-based condition-aware models", arXiv preprint arXiv:1809.09195.
- Hartle, R.A., Ryan, T.W., Mann, E., Danovich, L.J., Sosko, W.B., Bouscher, J.W. and Baker Jr, M. (2002), "Bridge Inspector's Reference Manual: Volume 1 and Volume 2 (No. DTFH61-97-D-00025)", United States. Federal Highway Administration.
- Katharopoulos, A. and Fleuret, F. (2018), "Not all samples are created equal: Deep learning with importance sampling", Proceedings of International Conference on Machine Learning, pp. 2525-2534.
- Kim, B. and Cho, S. (2019), "Image-based concrete crack assessment using mask and region-based convolutional neural network", Struct. Control Health Monitor., 26(8), e2381. https://doi.org/10.1002/stc.2381
- Li, L., Zhou, T., Wang, W., Li, J. and Yang, Y. (2022), "Deep Hierarchical Semantic Segmentation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1246-1257.
- Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput.-Aided Civil Infrastr. Eng., 34(5), 415-430. https://doi.org/10.1111/mice.12425
- Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
- Liu, J., Chen, S., Berges, M., Bielak, J., Garrett, J.H., Kovacevic, J. and Noh, H.Y. (2020), "Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction", Mech. Syst. Signal Process., 136, 106454. https://doi.org/10.1016/j.ymssp.2019.106454
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B. (2021), "Swin transformer: Hierarchical vision transformer using shifted windows", Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012-10022.
- Liu, J., Xu, S., Berges, M. and Noh, H.Y. (2022), "HierMUD: Hierarchical multi-task unsupervised domain adaptation between bridges for drive-by damage diagnosis", Struct. Health Monitor, p. 14759217221081159. https://doi.org/10.1177/14759217221081159
- Narazaki, Y., Hoskere, V., Yoshida, K., Spencer Jr., B.F. and Fujino, Y. (2021), "Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts", Mech. Syst. Signal Process., 160, 107850. https://doi.org/10.1016/j.ymssp.2021.107850
- Noh, H., Hong, S. and Han, B. (2015), "Learning deconvolution network for semantic segmentation", Proceedings of the IEEE International Conference on Computer Vision, pp. 1520-1528.
- Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L. and Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Constr. Build. Mater., 234, 117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical image computing and computer-assisted intervention, pp. 234-241.
- Shelhamer, E., Long, J. and Darrell, T. (2017). "Fully convolutional networks for semantic segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(4), 640-651. https://doi.org/10.1109/TPAMI.2016.2572683
- Shrivastava, A., Gupta, A. and Girshick, R. (2016), "Training region-based object detectors with online hard example mining", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761-769.
- Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monitor., 26(3), e2321. https://doi.org/10.1002/stc.2321
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 04020073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002535
- Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X. and Liu, W. (2020), "Deep highresolution representation learning for visual recognition", IEEE Transact. Pattern Anal. Mach. Intell., 43(10), 3349-3364. https://doi.org/10.1109/TPAMI.2020.2983686
- Xiao, T., Liu, Y., Zhou, B., Jiang, Y. and Sun, J. (2018), "Unified perceptual parsing for scene understanding", Proceedings of the European conference on computer vision (ECCV), pp. 418-434.
- Xu, H., Su, X., Wang, Y., Cai, H., Cui, K. and Chen, X. (2019), "Automatic bridge crack detection using a convolutional neural network", Appl. Sci., 9(14), 2867. https://doi.org/10.3390/app9142867
- Yuan, Y., Chen, X. and Wang, J. (2020), "Object-contextual representations for semantic segmentation", Proceedings of European Conference on Computer Vision, pp. 173-190.
- Zhang, J., Lu, C., Wang, J., Wang, L. and Yue, X.G. (2019), "Concrete cracks detection based on FCN with dilated convolution", Appl. Sci., 9(13), 2686. https://doi.org/10.3390/app9132686
- Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R. and Li, M. (2022), "Resnest: Split-attention networks", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736-2746.
- Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. (2017), "Pyramid scene parsing network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881-2890.
- Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A. and Torralba, A. (2019), "Semantic understanding of scenes through the ade20k dataset", Int. J. Comput. Vision, 127(3), 302-321. https://doi.org/10.1007/s11263-018-1140-0