과제정보
The work described in this paper was jointly supported by the National Natural Science Foundation of China (Grant No. 52178306), and the China Postdoctoral Science Foundation (Grant No. 2022M712787).
참고문헌
- Achille, C., Adami, A., Chiarini, S., Cremonesi, S., Fassi, F., Fregonese, L. and Taffurelli, L. (2015), "UAV-based photogrammetry and integrated technologies for architectural applications-methodological strategies for the after-quake survey of vertical structures in Mantua (Italy)", Sensors, 15(7), 15520-15539. https://doi.org/10.3390/s150715520
- Alipour, M., Harris, D.K. and Miller, G.R. (2019), "Robust pixel-level crack detection using deep fully convolutional neural networks", J. Comput Civil Eng., 33(6), 04019040. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000854
- Amirkolaee, H.A. and Arefi, H. (2019), "CNN-based estimation of pre-and post-earthquake height models from single optical images for identification of collapsed buildings", Remote Sens. Lett., 10(7), 679-688. https://doi.org/10.1080/2150704X.2019.1601277
- Azimi, M., Eslamlou, A.D. and Pekcan, G. (2020), "Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review", Sensors, 20(10), 2778. https://doi.org/10.3390/s20102778
- Baiocchi, V., Dominici, D., Milone, M.V. and Mormile, M. (2014), "Development of a software to optimize and plan the acquisitions from UAV and a first application in a post-seismic environment", Eur. J. Remote Sens., 47(1), 477-496. https://doi.org/10.5721/EuJRS20144727
- Balz, T. and Liao, M. (2010), "Building-damage detection using post-seismic high-resolution SAR satellite data", Int. J. Remote Sens., 31(13), 3369-3391. https://doi.org/10.1080/01431161003727671
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/1475921718757405
- Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T. and Bangash, H.A. (2014), "Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology", J. Struct. Geol., 69, 163-178. https://doi.org/10.1016/j.jsg.2014.10.007
- Binda, L., Saisi, A. and Tiraboschi, C. (2000), "Investigation procedures for the diagnosis of historic masonries", Constr. Build. Mater., 14(4), 199-233. https://doi.org/10.1016/S0950-0618(00)00018-0
- Bonnefoy-Claudet, S., Cotton, F. and Bard, P.Y. (2006), "The nature of noise wavefield and its applications for site effects studies: A literature review", Earth-Sci. Rev., 79(3-4), 205-227. https://doi.org/10.1016/j.earscirev.2006.07.004
- Boore, D.M. and Atkinson, G.M. (2008), "Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s", Earthq. Spectra, 24(1), 99-138. https://doi.org/10.1193/1.2830434
- Brunner, D., Schulz, K. and Brehm, T. (2011), "Building damage assessment in decimeter resolution SAR imagery: A future perspective", Proceedings of 2011 Joint Urban Remote Sensing Event, Munich, Germany (CD-ROM).
- Cao, C., Liu, D., Singh, R.P., Zheng, S., Tian, R. and Tian, H. (2016), "Integrated detection and analysis of earthquake disaster information using airborne data", Geomat. Nat. Haz. Risk, 7(3), 1099-1128. https://doi.org/10.1080/19475705.2015.1020887
- Carreno, M.L., Cardona, O.D. and Barbat, A.H. (2010), "Computational tool for post-earthquake evaluation of damage in buildings", Earthq. Spectra, 26(1), 63-86. https://doi.org/10.1193/1.3282885
- Chang, C., Bo, J., Qi, W., Qiao, F. and Peng, D. (2022), "Distribution of large-and medium-scale loess landslides induced by the Haiyuan Earthquake in 1920 based on field investigation and interpretation of satellite images", Open Geosci., 14(1), 995-1019. https://doi.org/10.1515/geo-2022-0403
- Chini, M., Pierdicca, N. and Emery, W.J. (2008), "Exploiting SAR and VHR optical images to quantify damage caused by the 2003 Bam earthquake", IEEE T. Geosci. Remote, 47(1), 145-152. https://doi.org/10.1109/TGRS.2008.2002695
- Dai, K., Deng, J., Xu, Q., Li, Z.H., Shi, X.L., Hancock, C., Wen, N.L., Zhang, L.L. and Zhuo, G.C. (2022), "Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements", GISci. Remote Sens., 59(1), 1226-1242. https://doi.org/10.1080/15481603.2022.2100054
- Dizaji, M.S. and Harris, D.K. (2019), "3D InspectionNet: A deep 3D convolutional neural networks based approach for 3D defect detection on concrete columns", In: Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII, Volk. 10971, pp. 67-77. https://doi.org/10.1117/12.2514387
- Dominici, D., Alicandro, M. and Massimi, V. (2017), "UAV photogrammetry in the post-earthquake scenario: case studies in L'Aquila", Geomat. Nat. Haz. Risk, 8(1), 87-103. https://doi.org/10.1080/19475705.2016.1176605
- Dong, Y., Li, Q., Dou, A. and Wang, X. (2011), "Extracting damages caused by the 2008 Ms 8.0 Wenchuan earthquake from SAR remote sensing data", J. Asian Earth Sci., 40(4), 907-914. https://doi.org/10.1016/j.jseaes.2010.07.009
- Dong, L., Shan, J. and Ye, Y. (2014), "An attempt of using straight-line information for building damage detection based only on post-earthquake optical imagery", Proceedings of IOP Conference Series: Earth and Environmental Science, Wu Han, China (CD-ROM).
- Dramsch, J.S. (2020), "70 years of machine learning in geoscience in review", Adv. Geophys., 61, 1-55. https://doi.org/10.1016/bs.agph.2020.08.002
- Duarte, D., Nex, F., Kerle, N. and Vosselman, G. (2020), "Detection of seismic facade damages with multi-temporal oblique aerial imagery", Gisci. Remote. Sens., 57(5), 670-686. https://doi.org/10.1080/15481603.2020.1768768
- Duffy, J.P. and Anderson, K. (2016), "A 21st-century renaissance of kites as platforms for proximal sensing", Prog. Phys. Geog., 40(2), 352-361. https://doi.org/10.1177/0309133316641810
- Ebrahimkhanlou, A., Farhidzadeh, A. and Salamone, S. (2015), "Multifractal analysis of two-dimensional images for damage assessment of reinforced concrete structures", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, CA, USA (CD-ROM).
- Fayaz, J. and Galasso, C. (2022), "A deep neural network framework for real-time on-site estimation of acceleration response spectra of seismic ground motions", Comput. Aided Civil Infrastruct. Eng., 1-17. https://doi.org/10.1111/mice.12830
- Freeman, M., Vernon, C., Berrett, B., Hastings, N., Derricott, J., Pace, J., Horne, B., Hammond, J., Janson, J., Chiabrando, F., Hedengren, J. and Franke, K. (2019), "Sequential earthquake damage assessment incorporating optimized sUAV remote sensing at Pescara del Tronto", Geosciences, 9(8), 332. https://doi.org/10.3390/geosciences9080332
- Fu, B. and Lin, A. (2003), "Spatial distribution of the surface rupture zone associated with the 2001 Ms 8.1 Central Kunlun earthquake, northern Tibet, revealed by satellite remote sensing data", Int. J. Remote Sens., 24(10), 2191-2198. https://doi.org/10.1080/0143116031000075918
- Fu, R., He, J., Liu, G., Li, W., Mao, J., He, M. and Lin, Y. (2022), "Fast Seismic Landslide Detection Based on Improved Mask R-CNN", Remote Sens.-basel, 14(16), 3928. https://doi.org/10.3390/rs14163928
- German, S., Brilakis, I. and DesRoches, R. (2012), "Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments", Adv. Eng. Inform., 26(4), 846-858. https://doi.org/10.1016/j.aei.2012.06.005
- Ghorbanzadeh, O., Meena, S.R., Blaschke, T. and Aryal, J. (2019), "UAV-based slope failure detection using deep-learning convolutional neural networks", Remote Sens.-basel, 11(17), 2046. https://doi.org/10.3390/rs11172046
- Gorgin, R. and Wang, Z. (2021), "Baseline-free damage imaging technique for Lamb wave based structural health monitoring systems", Smart Struct. Syst., Int. J., 28(5), 689-698. https://doi.org/10.12989/sss.2021.28.5.689
- Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M. and Chang, K.T. (2012), "Landslide inventory maps: New tools for an old problem", Earth-Sci. Rev., 112(1-2), 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001
- Hashash, Y.M.A., Jeffrey, J.H., Birger, S. and John, I-C. Y. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7
- Holden, T., Restrepo, J. and Mander, J.B. (2003), "Seismic performance of precast reinforced and prestressed concrete walls", J. Struct. Eng., 129(3), 286-296. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286)
- Hu, S., Zhu, S. and Wang, W. (2022), "Machine learning-driven probabilistic residual displacement-based design method for improving post-earthquake repairability of steel moment-resisting frames using self-centering braces", J. Build. Eng., 61, 105225. https://doi.org/10.1016/j.jobe.2022.105225
- Huang, Q., Wang, Y., Xu, J., Nishyirimbere, A. and Li, Z. (2017), "Geo-hazard detection and monitoring using SAR and optical images in a snow-covered area: the Menyuan (China) test site", ISPRS Int. J. Geo-Inf., 6(10), 293. https://doi.org/10.3390/ijgi6100293
- Huang, W.L., Gao, F., Liao, J.P. and Chuai, X.Y. (2021), "A deep learning network for estimation of seismic local slopes", Petrol. Sci., 18(1), 92-105. https://doi.org/10.1007/s12182-020-00530-1
- Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Autom. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844
- Jalayer F. and Cornell, C.A. (2009), "Alternative non-linear demand estimation methods for probability-based seismic assessments", Earthq. Eng. Struct. D., 38(8), 951-972. https://doi.org/10.1002/eqe.876
- Ji, M., Liu, L. and Buchroithner, M. (2018), "Identifying collapsed buildings using post-earthquake satellite imagery and convolutional neural networks: A case study of the 2010 Haiti earthquake", Remote Sens.-basel, 10(11), 1689. https://doi.org/10.3390/rs10111689
- Jing, Y., Ren, Y., Liu, Y., Wang, D. and Yu, L. (2022), "Automatic Extraction of Damaged Houses by Earthquake Based on Improved YOLOv5: A Case Study in Yangbi", Remote Sens.-basel, 14(2), 382. https://doi.org/10.3390/rs14020382
- Kakooei, M. and Baleghi, Y. (2017), "Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment", Int. J. Remote Sens., 38(8-10), 2511-2534. https://doi.org/10.1080/01431161.2017.1294780
- Kaloop, M.R. and Kim, D. (2014), "GPS-structural health monitoring of a long span bridge using neural network adaptive filter", Surv. Rev., 46(334), 7-14. https://doi.org/10.1179/1752270613Y.0000000053
- Kamari, M., Kim, J. and Ham, Y. (2022), "Analyzing Safety Risk Imposed by Jobsite Debris to Nearby Built Environments Using Geometric Digital Twins and Vision-Based Deep Learning", J. Comput. Civil Eng., 36(6), 04022033. https://doi.org/10.1061/(ASCE)CP.1943-5487.0001044
- Kang, D. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aided Civil Infrastruct. Eng., 33(10), 885-902. https://doi.org/10.1111/mice.12375
- Khodaverdi zahraee, N and Rastiveis, H. (2017), "Object-oriented analysis of satellite images using artificial neural networks for post-earthquake buildings change detection", Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci., Tehran, Iran. (CD-ROM)
- Kim, M. and Song, J. (2022), "Near-real-time identification of seismic damage using unsupervised deep neural network", J. Eng. Mech., 148(3), 04022006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002066
- Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle", Sensors, 18(6), 1881. https://doi.10.3390/s18061881
- Kim, T., Song, J. and Kwon, O.S. (2020), "Pre- and post-earthquake regional loss assessment using deep learning", Earthq. Eng. Struct. Dyn., 49(7), 657-678. https://doi.org/10.1002/eqe.3258
- Kubat, M., Holte, R.C. and Matwin S. (1998), "Machine learning for the detection of oil spills in satellite radar images", Mach. Learn., 30(2), 195-215. https://doi.org/10.1023/A:1007452223027
- Lagomarsino, S. and Giovinazzi, S. (2006), "Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings", B. Earthq. Eng., 4(4), 415-443. https://doi.org/10.1007/s10518-006-9024-z
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Li, C.C., Zhang, G.S., Lei, T.J. and Gong, A.D. (2011), "Quick image-processing method of UAV without control points data in earthquake disaster area", Transact. Nonferrous Metals Soc. China, 21, s523-s528. https://doi.org/10.1016/S1003-6326(12)61635-5
- Li, J., He, Z. and Zhao, X. (2021), "A data-driven building's seismic response estimation method using a deep convolutional neural network", IEEE Access., 9, 50061-50077. https://doi.org/10.1109/ACCESS.2021.3065837
- Liou, Y.A., Kar, S.K. and Chang, L. (2010), "Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: a study following the 12 May 2008 Wenchuan Earthquake", Int. J. Remote Sens., 31(13), 3355-3368. https://doi.org/10.1080/01431161003727655
- Liu, H., Koyama, C., Zhu, J., Liu, Q. and Sato, M. (2016), "Post-earthquake damage inspection of wood-frame buildings by a polarimetric GB-SAR system", Remote Sens., 8(11), 935. https://doi.org/10.3390/rs8110935
- Luo, X., Feng, Q., Jia, Y., Chen, H., Song, Y. and Xu, W. (2022), "The Large-Scale Investigation and Analysis of Lophodermium piceae in Subalpine Areas Based on Satellite Multi-Spectral Remote Sensing", Diversity, 14(9), 727. https://doi.org/10.3390/d14090727
- Ma, H., Liu, Y., Ren, Y. and Yu, J. (2019), "Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3", Remote Sens., 12(1), 44. https://doi.org/10.3390/rs12010044
- Mantawy, I.M. and Mantawy, M.O. (2022), "Convolutional neural network based structural health monitoring for rocking bridge system by encoding time-series into images", Struct. Control. Health Monit., 29(3), e2897. https://doi.org/10.1002/stc.2897
- Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. and Rabaute, T. (1993), "The displacement field of the Landers earthquake mapped by radar interferometry", Nature, 364(6433), 138-142. https://doi.org/10.1038/364138a0
- Matin, S.S. and Pradhan, B. (2021), "Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review", Geocarto Int., 1-27. https://doi.org/10.1080/10106049.2021.1933213
- Matsuoka, M. and Nojima, N. (2010), "Building damage estimation by integration of seismic intensity information and satellite L-band SAR imagery", Remote Sens.-Basel, 2(9), 2111-2126. https://doi.org/10.3390/rs2092111
- Miura, H., Aridome, T. and Matsuoka, M. (2020), "Deep learning-based identification of collapsed, non-collapsed and blue tarp-covered buildings from post-disaster aerial images", Remote Sens., 12(12), 1924. https://doi.org/10.3390/rs12121924
- Miyamoto, T. and Yamamoto, Y. (2021), "Using 3-D Convolution and Multimodal Architecture for Earthquake Damage Detection Based on Satellite Imagery and Digital Urban Data", IEEE J-Stars., 14, 8606-8613. https://doi.org/10.1109/JSTARS.2021.3102701
- Narazaki, Y., Hoskere, V., Chowdhary, G. and Spencer Jr, B.F. (2022), "Vision-based navigation planning for autonomous post-earthquake inspection of reinforced concrete railway viaducts using unmanned aerial vehicles", Autom. Constr., 137, 104214. https://doi.org/10.1016/j.autcon.2022.104214
- Nedjati, A., Vizvari, B. and Izbirak, G. (2016), "Post-earthquake response by small UAV helicopters", Natural Hazards, 80(3), 1669-1688. https://doi.org/10.1007/s11069-015-2046-6
- Nex, F., Duarte, D., Tonolo, F.G. and Kerle, N. (2019), "Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions", Remote Sens.-basel, 11(23), 2765. https://doi.org/10.3390/rs11232765
- Ouzounov, D., Bryant, N., Logan, T., Pulinets, S. and Taylor, P. (2006), "Satellite thermal IR phenomena associated with some of the major earthquakes in 1999-2003", Phys. Chem. Earth, Parts A/B/C, 31(4-9), 154-163. https://doi.org/10.1016/j.pce.2006.02.036
- Rajput, S., Ippili, A., Puraswani, D., Johri, S., Nadathur, A. and Dhar, S. (2020), "Impact of earthquakes based on satellite images using IoT and sensor networks", Proceedings of the 12th International Conference on Communication Software and Networks, Chong Qing, China (CD-ROM).
- Rao, G.N.S. and Satyam, D.N. (2022), "Deterministic and Probabilistic Seismic Hazard Analysis of Tindharia, Darjeeling Sikkim Himalaya, India", J. Geol. Soc. India, 98(9), 1295-1300. https://doi.org/10.1007/s12594-022-2165-0
- Riedel, I., Gueguen, P., Dalla Mura, M., Pathier, E., Leduc, T. and Chanussot, J. (2015), "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods", Natural Hazards, 76(2), 1111-1141. https://doi.org/10.1007/s11069-014-1538-0
- Rosen, P.A., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., Shaffer, S., Muellerschoen, R., Jones, C., Madsen, S. and Zebker, H. (2007), "UAVSAR: New NASA airborne SAR system for research", IEEE Aero. El. Sys. Mag., 22(11), 21-28. https://doi.org/10.1109/MAES.2007.4408523
- Saba, S.B., Ali, M., Turab, S.A., Waseem, M. and Faisal, S. (2022), "Comparison of pixel, sub-pixel and object-based image analysis techniques for co-seismic landslides detection in seismically active area in Lesser Himalaya, Pakistan", Nat. Hazards, 1-16. https://doi.org/10.1007/s11069-022-05642-y
- Sajedi, S.O. and Liang, X. (2019), "A Convolutional Cost-Sensitive Crack Localization Algorithm for Automated and Reliable RC Bridge Inspection", arXiv preprint arXiv: 1905.09716. https://doi.org/10.48550/arXiv.1905.09716
- Santos, R., Ribeiro, D., Lopes, P., Cabral, R. and Calcada, R. (2022), "Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles", Autom. Constr., 139, 104324. https://doi.org/10.1016/j.autcon.2022.104324
- Seydi, S.T., Rastiveis, H., Kalantar, B., Halin, A.A. and Ueda, N. (2022), "BDD-Net: An End-to-End Multiscale Residual CNN for Earthquake-Induced Building Damage Detection", Remote Sens.-Basel, 14(9), 2214. https://doi.org/10.3390/rs14092214
- Sezen, H., Whittaker, A.S., Elwood, K.J. and Mosalam, K.M. (2003), "Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey", Eng. Struct., 25(1), 103-114. https://doi.org/10.1016/S0141-0296(02)00121-9
- Shang, Q., Guo, X., Li, J. and Wang, T. (2022), "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city", Reliab. Eng. Syst. Safe., 228, 108782. https://doi.org/10.1016/j.ress.2022.108782
- Song, D., Tan, X., Wang, B., Zhang, L., Shan, X. and Cui, J. (2020), "Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery", Int. J. Remote Sens., 41(3), 1040-1066. https://doi.org/10.1080/01431161.2019.1655175
- Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226, 111347. https://doi.org/10.1016/j.engstruct.2020.111347
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, X., Chen, X., Yang, L., Wang, W., Zhou, X., Wang, L. and Yao, Y. (2022), "Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake", Remote Sens.-Basel, 14(13), 3009. https://doi.org/10.3390/rs14133009
- Syifa, M., Kadavi, P.R. and Lee, C.W. (2019), "An artificial intelligence application for post-earthquake damage mapping in Palu, central Sulawesi, Indonesia", Sensors, 19(3), 542. https://doi.org/10.3390/s19030542
- Tang, Z., Chen, Z., Bao, Y. and Li, H. (2019), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control Hlth., 26(1), e2296. https://doi.org/10.1002/stc.2296
- Tronin, A.A. (2009), "Satellite remote sensing in seismology. A review", Remote Sens.-Basel, 2(1), 124-150. https://doi.org/10.3390/rs2010124
- Vafaei, M., Adnan, A.B. and Rahman A.B.A. (2013), "Real-time seismic damage detection of concrete shear walls using artificial neural networks", J. Earthq. Eng., 17(1), 137-154. https://doi.org/10.1080/13632469.2012.713559
- Verykokou, S., Ioannidis, C., Athanasiou, G., Doulamis, N. and Amditis, A. (2018), "3D reconstruction of disaster scenes for urban search and rescue", Multimed. Tools Appl., 77(8), 9691-9717. https://doi.org/10.1007/s11042-017-5450-y
- Wang, X. and Li, P. (2015), "Extraction of earthquake-induced collapsed buildings using very high-resolution imagery and airborne lidar data", Int. J. Remote. Sens., 36(8), 2163-2183. http://dx.doi.org/10.1080/01431161.2015.1034890
- Wang, T., Wei, S. and Jonsson, S. (2015), "Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake", Geophys. Res. Lett., 42(17), 7022-7030. https://doi.org/10.1002/2015GL064585
- Wang, B., Tan, X., Song, D.M. and Zhang, L. (2020), "Rapid identification of post-earthquake collapsed buildings via multi-scale morphological profiles with multi-structuring elements", IEEE Access, 8, 122036-122056. https://doi.org/10.1109/ACCESS.2020.3007255
- Wang, C., Antos, S.E. and Triveno, L.M. (2021a), "Automatic detection of unreinforced masonry buildings from street view images using deep learning-based image segmentation", Autom. Constr., 132, 103968. https://doi.org/10.1016/j.autcon.2021.103968
- Wang, L., Spencer Jr, B.F., Li, J. and Hu, P. (2021b), "A fast image-stitching algorithm for characterization of cracks in large-scale structures", Smart Struct. Syst., Int. J., 27(4), 593-605. https://doi.org/10.12989/sss.2021.27.4.593
- Wang, Y., Cui, L., Zhang, C., Chen, W., Xu, Y. and Zhang, Q. (2022), "A two-stage seismic damage assessment method for small, dense, and imbalanced buildings in remote sensing images", Remote Sens., 14(4), 1012. https://doi.org/10.3390/rs14041012
- Xiong, W., Chen, W., Wang, D.Z., Wen, Y.M., Nie, Z.S., Liu, G., Wang, D.J., Yu, P.F., Qiao, X.J. and Zhao, B. (2022), "Coseismic slip and early afterslip of the 2021 Mw 7.4 Maduo, China earthquake constrained by GPS and InSAR data", Tectonophysics, 840, 229558. https://doi.org/10.1016/j.tecto.2022.229558
- Xu, B., Wu, Z., Yokoyama, K., Harada, T. and Chen, G. (2005), "A soft post-earthquake damage identification methodology using vibration time series", Smart Mater. Struct., 14(3), S116. https://doi.org/10.1088/0964-1726/14/3/014
- Xu, X., Li, X. and Liu, C. (2012), "Building damage detection based on single high-resolution remote sensing imagery", Proceedings of the International Conference on Automatic Control and Artificial Intelligence, Xia Men, China (CD-ROM).
- Xu, Y., Wei, S., Bao, Y. and Li, H. (2019), "Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network", Struct. Control. Health Monit., 26(3), e2313. https://doi.org/10.1002/stc.2313
- Xu, Y., Lu, X., Cetiner, B. and Taciroglu, E. (2021), "Real-time regional seismic damage assessment framework based on long short-term memory neural network", Comput.-Aided Civil Infrastruct. Eng., 36(4), 504-521. https://doi.org/10.1111/mice.12628
- Yao, Q.L. and Qiang, Z.J. (2012), "Thermal infrared anomalies as a precursor of strong earthquakes in the distant future", Natural Hazards, 62(3), 991-1003. https://doi.org/10.1007/s11069-012-0130-8
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Ye, X.W., Jin, T., Li, Z.X., Ma, S.Y., Ding, Y. and Ou, Y.H. (2021), "Structural crack detection from benchmark data sets using pruned fully convolutional networks", J. Struct. Eng., 147(11), 04721008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003140
- Ye, X.W., Ma, S.Y., Liu, Z.X., Ding, Y., Li, Z.X. and Jin, T. (2022), "Post-earthquake damage recognition and condition assessment of bridges using UAV integrated with deep learning approach", Struct. Control Hlth., e3128. https://doi.org/10.1002/stc.3128
- Yu, Y., Wang, C., Gu, X. and Li, J. (2019), "A novel deep learning-based method for damage identification of smart building structures", Struct. Health Monit., 18(1), 143-163. https://doi.org/10.1177/1475921718804132
- Zhai, W., Huang, C. and Pei, W. (2018), "Two new polarimetric feature parameters for the recognition of the different kinds of buildings in earthquake-stricken areas based on entropy and eigenvalues of PolSAR decomposition", Remote Sens., 10(10), 1613. https://doi.org/10.3390/rs10101613
- Zhang, M., Yang, X., Zhang, J. and Li, G. (2022a), "Post-earthquake resilience optimization of a rural 'road-bridge' transportation network system", Reliab. Eng. Syst. Safe., 225, 108570. https://doi.org/10.1016/j.ress.2022.108570
- Zhang, Q., Li, Y., Zhang, J., Tian, Y., Tian, T. and Li, B. (2022b), "Slip deformation along the Gyaring Co fault from InSAR and GPS", Acta Geophys., 1-11. https://doi.org/10.1080/01431161003727655
- Zhao, B., Wang, Y., Li, W., Lu, H. and Li, Z. (2022), "Evaluation of factors controlling the spatial and size distributions of landslides, 2021 Nippes earthquake, Haiti", Geomorphology, 415, 108419. https://doi.org/10.1016/j.geomorph.2022.108419
- Zhu, Z., German, S. and Brilakis, I. (2011), "Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation", Autom. Constr., 20(7), 874-883. https://doi.org/10.1016/j.autcon.2011.03.004 Zou, D., Zhang, M., Bai, Z., Liu, T., Zhou, A., Wang, X. and
- Zhang, S. (2022), "Multicategory damage detection and safety assessment of post-earthquake reinforced concrete structures using deep learning", Comput-Aided. Civil Infrastruct. Eng., 37, 1188-1204. https://doi.org/10.1111/mice.12815