DOI QR코드

DOI QR Code

초등학교 2학년 학생들의 패턴에 대한 이해 실태 조사: 규칙 찾기 단원의 학습 전과 후의 비교분석을 중심으로

Second graders' understanding of patterns: Focusing on the comparative analysis of before and after learning of the finding rules unit

  • Pang, JeongSuk (Korea National University of Education) ;
  • Lee, SooJin (Graduate School of Korea National University of Education) ;
  • Kang, Eunjeen (Graduate School of Korea National University of Education) ;
  • Kim, Leena (Graduate School of Korea National University of Education)
  • 투고 : 2023.04.26
  • 심사 : 2023.05.18
  • 발행 : 2023.05.31

초록

초등학생들을 대상으로 한 패턴 학습의 중요성에 비해 실제 저학년 학생들의 패턴에 대한 이해를 자세히 조사한 연구는 거의 없다. 이에 본 연구는 초등학교 2학년 학생들의 패턴에 대한 이해 실태를 조사하였다. 특히 2학년에서는 규칙 찾기 단원을 통해 패턴에 대한 학습이 이루어지기 때문에 해당 단원의 학습 전과 후의 이해 실태를 비교 분석하였다. 이를 위해 저학년 학생들의 패턴 학습 지도에 대한 선행 연구를 토대로 학생들의 패턴에 대한 이해를 측정할 수 있는 검사 도구를 개발하여, 최종 189명 학생들의 자료를 분석하였다. 연구 결과, 대부분의 문항에서 사전 검사에 비해 사후 검사에서 정답률이 높게 나와 규칙 찾기 단원의 학습 효과가 있는 것으로 판단된다. 그러나 학생들은 기하나 수 패턴에서 두 개의 구성 요소가 동시에 변화하는 규칙 찾기, 구조가 유사한 패턴 찾기, 증가 기하 패턴을 수 패턴으로 바꾸어 표현하기, 증가 패턴에서 빈 항을 구하기, 여러 가지 답이 가능한 패턴의 특정한 항을 추측하기 등에서 어려움을 겪는 것으로 드러났다. 이와 같은 연구 결과를 바탕으로 본 연구에서는 초등학교 저학년 학생들의 패턴 이해 및 지도에 대한 시사점을 논의하였다.

Despite the importance of pattern learning for elementary school students, few studies have investigated in detail the understanding of patterns of lower-grade students. This study aimed to analyze the understanding of patterns of second-grade elementary school students. Since the patterns in the second grade are taught through the unit called Finding Rules, students' understanding of patterns was compared and contrasted before and after they learned the unit. To this end, a written instrument to measure students' understanding of patterns was developed on the basis of previous studies on pattern learning for lower-grade students. A total of 189 students were analyzed. As a result of the study, the overall correct answer rates in the post-test were higher in most items than those in the pre-test, illustrating the positive effect of the specific unit. However, students found it difficult to find rules in which two components would change simultaneously either in geometric or numeric patterns, find patterns that would be similar in structure, represent geometric patterns into numeric patterns, find empty terms in increasing patterns, and reason the specific terms in patterns that can be differently interpreted. Based on these research results, this study sheds light on students' understanding of patterns and suggests implications to improve their understanding.

키워드

참고문헌

  1. Billings, E. M., Tiedt, T. L., & Slater, L. H. (2007). Research, reflection, practice: Algebraic thinking and pictorial growth patterns. Teaching Children Mathematics, 14(5), 302-308. https://doi.org/10.5951/TCM.14.5.0302
  2. Choi, B. H., & Pang, J. S. (2011). Analysis on the first graders' recognition and thinking about mathematical patterns. Journal of Educational Research in Mathematic, 21(1), 67-86.
  3. Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: Actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92(1), 1-19. https://doi.org/10.1007/s10649-015-9674-3
  4. Lee, E. J., Lee, S. H., & Lee, J. W. (2012). Problem-solving strategies and developmental pattern levels observed in the mathematical pattern task performance of preschoolers. Early Childhood Education Research, 32(5), 79-99. http://doi.org/10.18023/kjece.2012.32.5.004
  5. Luken, M. M., & Sauzet, O. (2021). Patterning strategies in early childhood: A mixed methods study examining 3-to 5-year-old children's patterning competencies. Mathematical Thinking and Learning, 23(1), 28-48. https://doi.org/10.1080/10986065.2020.1719452
  6. Ministry of Education (2015). Mathematics Curriculum. 2015-74(Book 8).
  7. Ministry of Education (2022a). Mathematics Curriculum. 2022-33(Book 8).
  8. Ministry of Education (2022b). Mathematics textbook 1-2. Visang Education.
  9. Ministry of Education (2022c). Mathematics textbook 2-1. Visang Education.
  10. Moss, J., & London McNab, S. (2011). An approach to geometric and numeric patterning that fosters second grade students' reasoning and generalizing about functions and co-variation. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 277-301). Springer. https://doi.org/10.1007/978-3-642-17735-4_16
  11. Mulligan, J., Oslington, G., & English, L. (2020). Supporting early mathematical development through a 'pattern and structure' intervention program. ZDM - Mathematics Education, 52(4), 663-676. https://doi.org/10.1007/s11858-020-01147-9
  12. Pang, J. S., Kim, L., & Sunwoo, J. (2022). Task development to measure functional thinking: Focusing on third graders' understanding. Journal of Educational Research in Mathematics, 32(3), 351-372. https://doi.org/10.29275/jerm.2022.32.3.351
  13. Pang, J. S., & Lee, S. J. (2023). An analysis of pattern activities of a finding rules unit in government-authorized mathematics curricular materials for fourth graders. Education of Primary School Mathematics, 26(1), 45-63. https://doi.org/10.7468/jksmec.2023.26.1.45
  14. Pang, J. S., & Sunwoo, J. (2016). An analysis on teaching methods of patterns in elementary mathematics textbooks. Education of Primary School Mathematics, 19(1), 1-18. https://doi.org/10.7468/jksmec.2016.19.1.1
  15. Papic, M., & Mulligan, J. (2007). The growth of early mathematical patterning: An intervention study. Mathematics: Essential research, essential practice, 591-600.
  16. Papic, M., Mulligan, J., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers' mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237-268. https://doi.org/10.5951/jresematheduc.42.3.0237
  17. Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In S. Alatorre, J. L. Cortina, M. Saiz, & A. Mendez (Eds.), Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 2-21). PME-NA.
  18. Radford, L. (2011). Grade 2 students' non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 303-322). Springer. https://doi.org/10.1007/978-3-642-17735-4_17
  19. Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2019). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166-178. https://doi.org/10.1016/j.ecresq.2018.03.006
  20. Rivera, F. D. (2018). Pattern generalization processing of elementary students: Cognitive factors affecting the development of exact mathematical structures. Eurasia Journal of Mathematics, Science and Technology Education, 14(9), em1586. https://doi.org/10.29333/ejmste/92554
  21. Tsamir, P., Tirosh, D., Levenson, E. S., Barkai, R., & Tabach, M. (2017). Repeating patterns in kindergarten: findings from children's enactments of two activities. Educational Studies in Mathematics, 96(1), 83-99. https://doi.org/10.1007/s10649-017-9762-7
  22. Warren, E., & Cooper, T. J. (2008). Patterns that support early algebraic thinking in the elementary school. In C. E. Greenes, & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (70th yearbook., pp. 113-126). National Council of Teachers of Mathematics.
  23. Wijns, N., Verschaffel, L., De Smedt, B., De Keyser, L., & Torbeyns, J. (2021). Stimulating preschoolers' focus on structure in repeating and growing patterns. Learning and Instruction, 74, 101444. https://doi.org/10.1016/j.learninstruc.2021.101444
  24. Zippert, E. L., Clayback, K., & Rittle-Johnson, B. (2019). Not just IQ: Patterning predicts preschoolers' math knowledge beyond fluid reasoning. Journal of Cognition and Development, 20(5), 752-771. https://doi.org/10.1080/15248372.2019.1658587