DOI QR코드

DOI QR Code

The Measurement of Korean Face Skin Rigidity for a Robotic Headform of Respiratory Protective Device Testing

호흡보호구 평가용 얼굴 로봇을 위한 한국인 얼굴 피부의 경도 측정

  • Eun-Jin Jeon (Dept. of Industrial & Management Engineering, POSTECH) ;
  • Young-jae Jung (Dept. of Clothing & Textiles/Center for Beautiful Aging, Kyungpook National University) ;
  • Ah-lam Lee (Dept. of Industrial & Management Engineering, POSTECH) ;
  • Hee-Eun Kim (Dept. of Clothing & Textiles/Center for Beautiful Aging, Kyungpook National University) ;
  • Hee-Cheon You (Dept. of Industrial & Management Engineering, POSTECH)
  • 전은진 (포항공과대학교 산업경영공학과) ;
  • 이아람 (경북대학교 의류학과/장수생활과학연구소) ;
  • 정영제 (포항공과대학교 산업경영공학과) ;
  • 김희은 (경북대학교 의류학과/장수생활과학연구소) ;
  • 유희천 (포항공과대학교 산업경영공학과)
  • Received : 2023.04.10
  • Accepted : 2023.04.26
  • Published : 2023.04.28

Abstract

This study aims to measure the skin rigidity of different facial areas among Koreans and propose guidelines for each area's skin rigidity that can be applied with a facial robot for testing respiratory protective devices. The facial skin rigidity of 40 participants, which included 20 men and 20 women, aged 20 to 50, was analyzed. The rigidity measurement was conducted in 13 facial areas, including six areas in contact with the mask and seven non-contact areas, by referring to the facial measurement guidelines of Size Korea. The facial rigidity was measured using the Durometer RX-1600-OO while in a supine position. The measurement procedure involved contacting the durometer vertically with the reference point, repeating the measurement of the same area five times, and using the average of three values whose variability was between 0.4 and 4.2 Shore OO. The rigidity data analysis used precision analysis, descriptive statistics analysis, and mixed-effect ANOVA. The analysis confirmed the rigidity of the 13 measurement areas, with the highest rigidity of the face being at the nose and forehead points, with values of 51.2 and 50.8, respectively, and the lowest rigidity being at the chin and center of the cheek points, with values of 19.2 and 20.7, respectively. Significant differences between gender groups were observed in four areas: the tip of the nose, the point below the chin, the area below the lower jaw, and the inner concha.

Keywords

Acknowledgement

본 연구는 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 중견연구사업(2022R1A2C1013198)과 식품의약품안전처의 재원으로 '의약외품 품질관리 체계 개선을 위한 기술 개발' (과제고유번호 : 21172화의안172) 지원에 의하여 수행되었습니다.

References

  1. Ahmad J., Pisaniello, D., & Wilkinson, I. J. (2010). Organizational issues in implementation of a large-scale, quantitative respirator fit-testing program. Infect Control Hosp Epidemiol, 31(9), 971-972. doi:10.1086/655836
  2. Aghassi, D., Monoson, T., & Braverman, I. (1995). Reproducible measurements to quantify cutaneous involvement in scleroderma. Archives of dermatology, 131(10), 1160-1166. https://doi.org/10.1001/archderm.1995.01690220066013
  3. Bergman, M. S., He, X., Joseph, M. E., Zhuang, Z., Heimbuch, B. K., Shaffer, R. E., Choe, M., & Wander, J. D. (2015). Correlation of respirator fit measured on human subjects and a static advanced headform. Journal of Occupational and Environmental Hygiene, 12(3), 163-171. doi:10.1080/15459624.2014.957832
  4. Choh, C., Wall, M., Brown, M., Nicolson, A., & Simms, M. (2010). Use of durometry in assessment of venous disease, Phlebology, 25, 94-99. doi:10.1258/phleb.2009.008088
  5. Cuaderes, E., Khan, M. M., Azzarello, J., & Lamb, W. L. (2009). Reliability and limitations of the durometer and pressurestat to measure plantar foot characteristics in native Americans with diabetes. Journal of Nursing Measurement, 17(1), 3-18. doi:10.1891/1061-3749.17.1.3
  6. Dellalana, L., Chen, F., Vain, A., Gandelman, J., Poldemaa, M., Chen, H., & Tkaczyk, E. (2019). Reproducibility of the durometer and myoton devices for skin stiffness measurement in healthy subjects. Skin Research Technology, 25(3), 289-293. doi:10.1111/srt.12646
  7. EcoFlex (2023, March 4). HYUP SHIN Co. Retrieved March 4, 2023, from https://www.hyup-shin.co.kr/product/detail.html?product_no=2060&cate_no=156&display_group=1
  8. Falanga, V., & Bucalo, B. (1993). Use of a durometer to assess skin hardness. Journal of American Academy of Dermatology, 29, 47-51. https://doi.org/10.1016/0190-9622(93)70150-R
  9. ISO (2016A). ISO 16900-5 Respiratory protective devices - Methods of test and test equipment - Part 5: Test equipment - Breathing machine, metabolic simulator, RPD headforms/torso, tools and transfer standards, International Organization for Standardization (ISO).
  10. Korean Agency for Technology and Standards. (2015). The 7th Size Korea 3D scan & measurement technology report. Seoul: Government Printing Office.
  11. Lim, H., & Chung, K. (2002). Measurement of skin hardness with durometer in normal Korean individuals. Journal of Korean Dermatological Association, 40(1), 19-24.
  12. Lore, M. B., Heimbuch, B. K., Brown, T. L., Wander, J. D., & Hinrichs, S. H. (2012). Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. Annals Work Exposures and Health, 56(1), 92-101. doi:10.1093/annhyg/mer054
  13. McMahon, E, Wada, K., & Dufresne, A. (2008). Implementing fit testing for N95 filtering facepiece respirators - Practical information from a large cohort of hospital workers. American Journal of Infection Control, 36, 298-300. doi:10.1016/j.ajic.2007.10.014
  14. Merkel, P., Silliman, P., Denton, C., Furst, D., Khanna, D., Emery, P., Hsu, V., Streisand, J., Polisson, P., Akesson, A., Coppock, J., Van Den Hoogen, F., Herrick, A., Mayes, D., Veale, D., Seibold, J., Black, C., & Korn, J. (2008). Validity, reliability, and feasibility of durometer measurements of scleroderma skin disease in a multicentre treatment trial. Arthritis Care & Research, 59(5), 699-705. doi:10.1002/art.23564
  15. Moon, K., Song, R., Kim, J., Lee, E., Lee, B., & Song, Y. (2012). The correlation between durometer score and modified Rodnan skin score in systemic sclerosis. Rheumatology International,. 32, 2465-2470. doi:10.1007/s00296-011-1993-9
  16. Pittar, N., Winter, T., Falland-Cheung, L., Tong, D., & Waddell, J. N. (2018). Scalp simulation - A novel approach to site-specific biomechanical modeling of the skin. Journal of the Mechanical Behavior of Biomedical Materials, 77, 308-313. doi:10.1016/j.jmbbm.2017.09.024.
  17. Rosicka, K., Mierzejewska-Krzyzowska, B., & Mrowczynski, W. (2020). Comparison of different MyotonPRO probes for skin stiffness evaluation in young women. Original Article, 28, 332-338. doi:10.1111/srt.12946
  18. Wander, J., Hanson, D., & Margolin, R. (2012). Humanlike articulate robotic headform to replace human volunteers in respirator fit testing, Han Robotics Inc Plano TX.
  19. Wiese, A., Berrocal, V., Furst, D., Seibold, J., Merkel, P., Mayes, M., & Khanna, D. (2014). Correlates and responsiveness to change of measurements of skin and musculoskeletal disease in early diffuse systemic sclerosis. Arthritis Care Research, 66, 1731-1739. doi:10. 1002/acr.22339. https://doi.org/10.1002/acr.22339
  20. Wilkinson, I. J., Pisaniello, D., Ahmad, J., & Edwards, S. (2010). Evaluation of a large-scale quantitative respirator-fit testing program for healthcare workers - Survey results. Infection Control and Hospital Epidemiology, 31(9), 918-925. doi:10.1086/655460
  21. Wolff, E., Pal, L., Altun, T., Madankumar, R., Freeman, R., Amin, H., Harman, M., Santoro, N., & Taylor, H. S. (2011). Skin wrinkles and rigidity in early postmenopausal women vary by race/ethnicity: baseline characteristics of the skin ancillary study of the KEEPS trial. Fertility and Sterility, 95(2), 658-662. doi:10.1016/j.fertnstert.2010.09.025
  22. Zhuang, Z., Benson, S., & Viscusi, D. (2020). Digital 3-D headforms with facial features representative of the current US workforce. Ergonomics, 53(5), 661-671. doi:10.1080/00140130903581656