References
- F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, "Flexible triboelectric generator", Nano Energy, 1, 328 (2012).
- Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors", ACS Nano, 7, 9533 (2013).
- Y. Liu, Y. Zhu, J. Liu, Y. Zhang, J. Liu, and J. Zhai, "Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator", Nanoscale Res. Lett. 13, 191 (2018).
- S. Yan, K. Dong, J. Lu, W. Song, and R. Xiao, "Amphiphobic triboelectric nanogenerators based on silica enhanced thermoplastic polymeric nanofiber membranes", Nanoscale, 12, 4527, (2020).
- J. Qi, A. C. Wang, W. Yang, M. Zhang, C. Hou, Q. Zhang, Y. Li, and H. Wang, "Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator", Nano Energy, 67, 104206 (2020).
- S. Yan, J. Lu, W. Song, and R. Xiao, "Flexible triboelectric nanogenerator based on cost-effective thermoplastic polymeric nanofiber membranes for body-motion energy harvesting with high humidity-resistance", Nano Energy, 48, 248 (2018).
- K. Zhao, W. Sun, X. Zhang, J. Meng, M. Zhong, L. Qiang, M. J. Liu, B. N. Gu, C. C. Chung, M. Liu, F. Yu, and Y. L. Chueh, "High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application", Nano Energy, 91, 106649 (2022).
- Q. Han, Z. Jiang, Y. Kong, and F. Chu, "Prebent membrane-based disk-type triboelectric nanogenerator applied to fault diagnosis in rotating machinery", IEEE ASME Trans Mechatron, 27, 4686 (2022).
- C. Xu, F. Zeng, D. Wu, P. Wang, X. Yin, and B. Jia, "Nerve stimulation by triboelectric nanogenerator based on nanofibrous membrane for spinal cord injury", Front. Chem., 10, 941065 (2022).
- Y. Yin, J. Wang, S. Zhao, W. Fan, X. Zhang, C. Zhang, Y. Xing, and C. Li, "Stretchable and tailorable triboelectric nanogenerator constructed by nanofibrous membrane for energy harvesting and self-powered biomechanical monitoring", Adv. Mater. Technol., 3, 1700370 (2018).
- G. J. Choi, S. H. Baek, I. K. Park, "Synergetic enhancement of triboelectric nanogenerators' performance based on patterned membranes fabricated by phase-inversion process", Phys. Status Solidi A Appl. Mater. Sci., 218, 2000829 (2021).
- T. Kamilya, P. K. Sarkar, and S. Acharya, "Unveiling peritoneum membrane for a robust triboelectric nanogenerator", ACS Omega 4, 17684 (2019).
- Z. Qin, Y. Yin, W. Zhang, C. Li, and K. Pan, "Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes", ACS Appl. Mater. Interfaces 11, 12452 (2019).
- D. L. Vu and K. K. Ahn, "Triboelectric enhancement of polyvinylidene fluoride membrane using magnetic nanoparticle for water-based energy harvesting", Polym., 14, 1547 (2022).
- S. Chen, J. Jiang, F. Xu, and S. Gong, "Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction", Nano Energy, 61, 69 (2019).
- M. R. Gokana, C. M. Wu, U. Reddicherla, and K. G. Motora, "Scalable preparation of ultrathin porous polyurethane membrane-based triboelectric nanogenerator for mechanical energy harvesting", Express Polym. Lett., 15 , 1019 (2021).
- Y. Hu, Y. Shi, X. Cao, Y. Liu, S. Guo, and J. Shen, "Enhanced output and wearable performances of triboelectric nanogenerator based on ePTFE microporous membranes for motion monitoring", Nano Energy, 86, 106103 (2021).
- S. Yan, Z. Zhang, X. Shi, Y. Xu, Y. Li, X. Wang, Q. Li, and L. S. Turng, "Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting", Int. J. Energy Res., 45, 11053 (2021).
- P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A. A. Narasimulu, C. D. Montemagno, L. Yu, and J. Luo, "Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators", ACS Appl. Mater. Interfaces, 10, 5880 (2018).
- T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu, S. Lee, D. Kim, M. Sharifuzzaman, S. M. S. Rana, and J. Y. Park, "Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications", Adv. Funct. Mater., 32, 2202145 (2022).
- X. Pu, J. W. Zha, C. L. Zhao, S. B. Gong, J. F. Gao, and R. K. Y. Li, "Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators", Chem. Eng. J., 398, 125526 (2020).
- Z. Sha, C. Boyer, G. Li, Y. Yu, F. M. Allioux, K. Kalantar-Zadeh, C. H. Wang, and J. Zhang, "Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance", Nano Energy, 92, 106713 (2022).
- D. L. Vu, C. D. Le, and K. K. Ahn, "Functionalized graphene oxide/polyvinylidene fluoride composite membrane acting as a triboelectric layer for hydropower energy harvesting", Int. J. Energy Res., 46, 9549 (2022).
- D. L. Vu, C. D. Le, C. P. Vo, and K. K. Ahn, "Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator", Compos Part B: Eng, 223, 109135 (2021).
- D. L. Vu, C. P. Vo, C. D. Le, and K. K. Ahn, "Enhancing the output performance of fluid-based triboelectric nanogenerator by using poly(vinylidene fluoride-co-hexafluoropropylene)/ionic liquid nanoporous membrane", Int. J. Energy Res., 45, 8960 (2021).