참고문헌
- Abdelrahman, A.A., Abdelwahed, M.S., Ahmed, H.M., Hamdi, A. and Eltaher, M.A. (2023), "Investigation of size-dependent vibration behavior of piezoelectric composite nanobeams embedded in an elastic foundation considering flexoelectricity effects", Math., 11(5), 1180. https://doi.org/10.3390/math11051180.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Alaei, Z. (2016), Power Enhancement in Piezoelectric Energy Harvesting.
- Ali, I.A., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022) "Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure", Mater. Res. Expr., 9(4), 045701. https://doi.org/10.1088/2053-1591/ac5cae.
- Almitani, K.H. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- Anand, A., Pal, S. and Kundu, S. (2021), "Multi-perforated energy-efficient piezoelectric energy harvester using improved stress distribution", IETE J. Res., 1-16. https://doi.org/10.1080/03772063.2021.1913071.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., 12(05), 2050055. https://doi.org/10.1142/S1758825120500556.
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136, 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
- Asthana, P. and Khanna, G. (2020) "Characterization and optimization of piezoelectric bimorph cantilever structure for ambient vibration-based energy harvesting application", Integr. Ferroelec., 211(1), 45-59. https://doi.org/10.1080/10584587.2020.1803674.
- Badr, B.M. and Ali, W.G. (2011), "Applications of piezoelectric materials", Adv. Mater. Res., 189, 3612-3620. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3612.
- Bendine, K., Boukhoulda, B.F., Nouari, M. and Satla, Z. (2017) "Structural modeling and active vibration control of smart FGM plate through ANSYS", Int. J. Comput. Meth., 14(04), 1750042. https://doi.org/10.1142/S0219876217500426.
- Benjeddou, A. (2015), "Approximate evaluations and simplified analyses of shear-mode piezoelectric modal effective electromechanical coupling", Adv. Aircraft Spacecraft Sci., 2(3), 275. https://doi.org/10.12989/aas.2015.2.3.275.
- Bhaskar, D.P. and Thakur, A.G. (2019), "FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory", Adv. Aircraft Spacecraft Sci., 6(5), 409-426. https://doi.org/10.12989/aas.2019.6.5.409.
- Bonello, P. and Rafique, S. (2011), "Modeling and analysis of piezoelectric energy harvesting beams using the dynamic stiffness and analytical modal analysis methods", J. Vib. Acoust., 133(1), 011009. https://doi.org/10.1115/1.4002931.
- Chen, S.E., Gunawan, H. and Wu, C.C. (2022) "An electromechanical model for clamped-edge bimorph disk type piezoelectric transformer utilizing kirchhoff thin plate theory", Sensor., 22(6), 2237. https://doi.org/10.3390/s22062237.
- Chen, Z., Song, X., Lei, L., Chen, X., Fei, C., Chiu, C.T., ... & Zhou, Q. (2016), "3D printing of piezoelectric element for energy focusing and ultrasonic sensing", Nano Energy, 27, 78-86. https://doi.org/10.1016/j.nanoen.2016.06.048.
- Cholleti, E.R. (2018), "A review on 3D printing of piezoelectric materials", IOP Conf. Ser.: Mater. Sci. Eng., 455(1), 012046. https://doi.org/10.1088/1757-899X/455/1/012046.
- Cui, H., Hensleigh, R., Yao, D., Maurya, D., Kumar, P., Kang, M.G., ... & Zheng, X. (2019), "Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response", Nat. Mater., 18(3), 234-241. https://doi.org/10.1038/s41563-018-0268-1.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018), "Resonance frequencies of size-dependent perforated non-local nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019), "Bending and vibrational behaviors of piezoelectric non-local nanobeam including surface elasticity", Wave. Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric non-local nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020) "Mechanical behaviors of piezoelectric non-local nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Erturk, A. and Inman, D.J. (2008), "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", J. Intel. Mater. Syst. Struct., 19(11), 1311-1325. https://doi.org/10.1177/1045389X07085639.
- Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2), 025009. https://doi.org/10.1088/0964-1726/18/2/025009.
- Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mechanica, 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
- Haldkar, R.K., Cherpakov, A.V., Parinov, I.A. and Yakovlev, V.E. (2022), "Comprehensive numerical analysis of a porous piezoelectric ceramic for axial load energy harvesting", Appl. Sci., 12(19), 10047. https://doi.org/10.3390/app121910047.
- Hasan, M.N., Muktadir, M.A. and Alam, M. (2022) "Comparative study of tapered shape bimorph piezoelectric energy harvester via finite element analysis", Forc. Mech., 9, 100131. https://doi.org/10.1016/j.finmec.2022.100131.
- Hosseini, R. and Hamedi, M. (2016), "Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester", J. Comput. Appl. Res. Mech. Eng., 6(1), 65-73. https://doi.org/10.22061/jcarme.2016.521.
- Jiang, W., Wang, L., Wang, X., Zhao, L., Fang, X. and Maeda, R. (2022), "Comparison of L-shaped and U-shaped beams in bidirectional piezoelectric vibration energy harvesting", Nanomater., 12(21), 3718. https://doi.org/10.3390/nano12213718.
- Kaur, N., Mahesh, D. and Singamsetty, S. (2020), "An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring", Adv. Struct. Eng., 23(5), 1010-1023. https://doi.org/10.1177/1369433219886956.
- Khalatkar, A., Gupta, V.K. and Haldkar, R. (2011), "Modeling and simulation of a cantilever beam for optimal placement of piezoelectric actuators for maximum energy harvesting", Smart Nano-Micro Mater. Dev., 8204, 2011. https://doi.org/10.1117/12.905087.
- Khazaee, M., Rezania, A. and Rosendahl, L. (2022), "Piezoelectric resonator design and analysis from stochastic car vibration using an experimentally validated finite element with viscous-structural damping model", Sustain. Energy Technol. Assessm., 52, 102228. https://doi.org/10.1016/j.seta.2022.102228.
- Lerch, R. (1988), "Finite element analysis of piezoelectric transducers", EEE 1988 Ultrasonics Symposium Proceedings, 643-654. https://doi.org/10.1109/ULTSYM.1988.49457.
- Lerch, R. (1990), "Simulation of piezoelectric devices by two- and three-dimensional finite elements", IEEE Trans. Ultrason., Ferroel. Freq. Control, 37(3), 233-247. https://doi.org/10.1109/58.55314.
- Lin, Y.C., Tseng, K.S. and Ma, C.C. (2021), "Investigation of resonant and energy harvesting characteristics of piezoelectric fiber composite bimorphs", Mater. Des., 197, 109267. https://doi.org/10.1016/j.matdes.2020.109267 .
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
- Machu, Z., Rubes, O., Sevecek, O. and Hadas, Z. (2021) "Experimentally verified analytical models of piezoelectric cantilevers in different design configurations", Sensor., 21(20), 6759. https://doi.org/10.3390/s21206759.
- Malekzadeh Fard, K., Khajehdehi Kavanroodi, M., Malek-Mohammadi, H. and Pourmoayed, A. (2022), "Buckling and vibration analysis of a double-layer graphene sheet coupled with a piezoelectric nanoplate", J. Appl. Comput. Mech., 8(1), 129-143. https://doi.org/10.22055/JACM.2020.32145.1976.
- Malikan, M. (2017), "Electromechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Model., 48, 196-207. http://doi.org/10.1016/j.apm.2017.03.065.
- Malikan, M. and Eremeyev, V.A. (2020), "On Nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution", Nanomater., 10(9), 1762. https://doi.org/10.3390/nano10091762
- Malikan, M. and Eremeyev, V.A. (2021), "Flexomagnetic response of buckled piezomagnetic composite nanoplates", Compos. Struct., 267, 113932. https://doi.org/10.1016/j.compstruct.2021.113932
- Mechkour, H. (2022), "Modeling of perforated piezoelectric plates", Math. Comput. Appl., 27(6), 100. https://doi.org/10.3390/mca27060100
- Meeker, T.R. (1996), "Publication and proposed revision of ANSI/IEEE standard 176-1987", IEEE Trans. Ultrasonic. Ferroel. Freq. Control, 43(5), 717-772. https://doi.org/10.1109/TUFFC.1996.535477
- Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W. and Eltaher, M.A. (2022) "Dynamic analysis of a piezoelectrically layered perforated non-local strain gradient nanobeam with flexoelectricity", Math., 10(15), 2614. https://doi.org/10.3390/math10152614
- Mohammad, K.H. and Dehghani, R. (2022), "Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester", J. Appl. Comput. Mech., 8(1), 97-113. https://doi.org/10.22055/JACM.2019.30823.1785.
- Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
- Nadeem, M., He, J.H., He, C.H., Sedighi, H.M. and Shirazi, A. (2022), "A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform", Twms J. Pure Appl. Math., 13(2), 168-182.
- Najafi Ardekany, A. (2022), "Vibration stabilization of a flexible beam under fluid loading by utilizing piezoceramics", Iran. J. Sci. Technol., Trans. Mech. Eng., 46(4), 1001-1013. https://doi.org/10.1007/s40997-021-00463-z.
- Phung, M.V., Nguyen, D.T., Doan, L.T., Nguyen, D.V. and Duong, T.V. (2022), "Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors", Iran. J. Sci. Technol., Trans. Mech. Eng., 46(4), 1047-1065. https://doi.org/10.1007/s40997-021-00459-9.
- Ramegowda, P.C., Ishihara, D., Takata, R., Niho, T. and Horie, T. (2020b), "Hierarchically decomposed finite element method for a triply coupled piezoelectric, structure, and fluid fields of a thin piezoelectric bimorph in fluid", Comput. Meth. Appl. Mech. Eng., 365, 113006. https://doi.org/10.1016/j.cma.2020.113006.
- Ramegowda, P.C., Ishihara, D., Takata, R. and Horie, T. (2021), "Hierarchical modeling and finite element analysis of piezoelectric energy harvester from structure-piezoelectric-circuit interaction", 14th WCCMECCOMAS Congress 2020, January. https://doi.org/10.23967/wccm-eccomas.2020.163.
- Ramegowda, P.C., Ishihara, D., Takata, R., Niho, T. and Horie, T. (2020a), "Finite element analysis of a thin piezoelectric bimorph with a metal shim using solid direct-piezoelectric and shell inverse-piezoelectric coupling with pseudo direct-piezoelectric evaluation", Compos. Struct., 245, 112284. https://doi.org/10.1016/j.compstruct.2020.112284.
- Shabara, M., Rahman Badawi, A. and Xu, T.B. (2020), "Comprehensive piezoelectric material application issues on energy harvesting for artificial intelligence systems", AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-1862.
- Shevtsova, M., Nasedkin, A., Shevtsov, S., Zhilyaev, I. and Chang, S. (2016), "An optimal design of underwater piezoelectric transducers of new generation", Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece.
- Silva, P.B., Mencik, J.M. and Arruda, J.R. (2016), "On the use of the wave finite element method for passive vibration control of periodic structures", Adv. Aircraft Spacecraft Sci., 3(3), 299. https://doi.org/10.12989/aas.2016.3.3.299.
- Su, H., Sui, L., Song, P. and Lu, Y. (2019), "Theoretical analysis and experimental study of a perforated piezoelectric cantilever", IOP Conf. Ser.: Mater. Sci. Eng., 563(3), 032039. https://doi.org/10.1088/1757-899X/563/3/032039.
- Wang, L., Wu, Z., Liu, S., Wang, Q., Sun, J., Zhang, Y., ... & Maeda, R. (2022), "Uniform stress distribution of bimorph by arc mechanical stopper for maximum piezoelectric vibration energy harvesting", Energi., 15(9), 3268. https://doi.org/10.3390/en15093268.
- Wang, S.Y. (2004), "A finite element model for the static and dynamic analysis of a piezoelectric bimorph", Int. J. Solid. Struct., 41(15), 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058.