DOI QR코드

DOI QR Code

Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis

  • Yousef A. Alessi (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ibrahim Ali (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Mashhour A. Alazwari (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Khalid Almitani (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alaa A Abdelrahman (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2023.04.03
  • 심사 : 2023.04.27
  • 발행 : 2023.03.25

초록

This article presents a numerical analysis to investigate the natural frequencies and harmonic response of a perforated cantilever beam attached to two layers of piezoelectric materials by using the finite element method for the first time. The bimorph piezoelectric is composed of 3 layers; two of them at the outer are piezoelectric, and the inner isotropic material. A higher order 3-D 20-node solid element that exhibits quadratic displacement behavior is exploited to discretize the isotropic layer, and coupled piezoelectric 3D element with twenty nodes is used to mesh the top and bottom layers. CIRCU94 element is added to act as a resistor part of the model. The proposed model is validated with previous works. The numerical parametric studies are presented to illustrate the effects of perforation geometry, the number of rows, the resistance on the natural frequencies, frequency response, and power. It is found that the thickness has a positive relationship with the natural frequency. Perforations help in producing higher voltage, and the best shape is rectangular perforations, and to produce higher voltage, two rows of rectangular perforations should be applied.

키워드

참고문헌

  1. Abdelrahman, A.A., Abdelwahed, M.S., Ahmed, H.M., Hamdi, A. and Eltaher, M.A. (2023), "Investigation of size-dependent vibration behavior of piezoelectric composite nanobeams embedded in an elastic foundation considering flexoelectricity effects", Math., 11(5), 1180. https://doi.org/10.3390/math11051180.
  2. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  3. Alaei, Z. (2016), Power Enhancement in Piezoelectric Energy Harvesting.
  4. Ali, I.A., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022) "Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure", Mater. Res. Expr., 9(4), 045701. https://doi.org/10.1088/2053-1591/ac5cae.
  5. Almitani, K.H. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  6. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  7. Anand, A., Pal, S. and Kundu, S. (2021), "Multi-perforated energy-efficient piezoelectric energy harvester using improved stress distribution", IETE J. Res., 1-16. https://doi.org/10.1080/03772063.2021.1913071.
  8. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., 12(05), 2050055. https://doi.org/10.1142/S1758825120500556.
  9. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136, 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
  10. Asthana, P. and Khanna, G. (2020) "Characterization and optimization of piezoelectric bimorph cantilever structure for ambient vibration-based energy harvesting application", Integr. Ferroelec., 211(1), 45-59. https://doi.org/10.1080/10584587.2020.1803674.
  11. Badr, B.M. and Ali, W.G. (2011), "Applications of piezoelectric materials", Adv. Mater. Res., 189, 3612-3620. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3612.
  12. Bendine, K., Boukhoulda, B.F., Nouari, M. and Satla, Z. (2017) "Structural modeling and active vibration control of smart FGM plate through ANSYS", Int. J. Comput. Meth., 14(04), 1750042. https://doi.org/10.1142/S0219876217500426.
  13. Benjeddou, A. (2015), "Approximate evaluations and simplified analyses of shear-mode piezoelectric modal effective electromechanical coupling", Adv. Aircraft Spacecraft Sci., 2(3), 275. https://doi.org/10.12989/aas.2015.2.3.275.
  14. Bhaskar, D.P. and Thakur, A.G. (2019), "FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory", Adv. Aircraft Spacecraft Sci., 6(5), 409-426. https://doi.org/10.12989/aas.2019.6.5.409.
  15. Bonello, P. and Rafique, S. (2011), "Modeling and analysis of piezoelectric energy harvesting beams using the dynamic stiffness and analytical modal analysis methods", J. Vib. Acoust., 133(1), 011009. https://doi.org/10.1115/1.4002931.
  16. Chen, S.E., Gunawan, H. and Wu, C.C. (2022) "An electromechanical model for clamped-edge bimorph disk type piezoelectric transformer utilizing kirchhoff thin plate theory", Sensor., 22(6), 2237. https://doi.org/10.3390/s22062237.
  17. Chen, Z., Song, X., Lei, L., Chen, X., Fei, C., Chiu, C.T., ... & Zhou, Q. (2016), "3D printing of piezoelectric element for energy focusing and ultrasonic sensing", Nano Energy, 27, 78-86. https://doi.org/10.1016/j.nanoen.2016.06.048.
  18. Cholleti, E.R. (2018), "A review on 3D printing of piezoelectric materials", IOP Conf. Ser.: Mater. Sci. Eng., 455(1), 012046. https://doi.org/10.1088/1757-899X/455/1/012046.
  19. Cui, H., Hensleigh, R., Yao, D., Maurya, D., Kumar, P., Kang, M.G., ... & Zheng, X. (2019), "Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response", Nat. Mater., 18(3), 234-241. https://doi.org/10.1038/s41563-018-0268-1.
  20. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018), "Resonance frequencies of size-dependent perforated non-local nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
  21. Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019), "Bending and vibrational behaviors of piezoelectric non-local nanobeam including surface elasticity", Wave. Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
  22. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric non-local nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
  23. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020) "Mechanical behaviors of piezoelectric non-local nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  24. Erturk, A. and Inman, D.J. (2008), "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", J. Intel. Mater. Syst. Struct., 19(11), 1311-1325. https://doi.org/10.1177/1045389X07085639.
  25. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2), 025009. https://doi.org/10.1088/0964-1726/18/2/025009.
  26. Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mechanica, 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
  27. Haldkar, R.K., Cherpakov, A.V., Parinov, I.A. and Yakovlev, V.E. (2022), "Comprehensive numerical analysis of a porous piezoelectric ceramic for axial load energy harvesting", Appl. Sci., 12(19), 10047. https://doi.org/10.3390/app121910047.
  28. Hasan, M.N., Muktadir, M.A. and Alam, M. (2022) "Comparative study of tapered shape bimorph piezoelectric energy harvester via finite element analysis", Forc. Mech., 9, 100131. https://doi.org/10.1016/j.finmec.2022.100131.
  29. Hosseini, R. and Hamedi, M. (2016), "Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester", J. Comput. Appl. Res. Mech. Eng., 6(1), 65-73. https://doi.org/10.22061/jcarme.2016.521.
  30. Jiang, W., Wang, L., Wang, X., Zhao, L., Fang, X. and Maeda, R. (2022), "Comparison of L-shaped and U-shaped beams in bidirectional piezoelectric vibration energy harvesting", Nanomater., 12(21), 3718. https://doi.org/10.3390/nano12213718.
  31. Kaur, N., Mahesh, D. and Singamsetty, S. (2020), "An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring", Adv. Struct. Eng., 23(5), 1010-1023. https://doi.org/10.1177/1369433219886956.
  32. Khalatkar, A., Gupta, V.K. and Haldkar, R. (2011), "Modeling and simulation of a cantilever beam for optimal placement of piezoelectric actuators for maximum energy harvesting", Smart Nano-Micro Mater. Dev., 8204, 2011. https://doi.org/10.1117/12.905087.
  33. Khazaee, M., Rezania, A. and Rosendahl, L. (2022), "Piezoelectric resonator design and analysis from stochastic car vibration using an experimentally validated finite element with viscous-structural damping model", Sustain. Energy Technol. Assessm., 52, 102228. https://doi.org/10.1016/j.seta.2022.102228.
  34. Lerch, R. (1988), "Finite element analysis of piezoelectric transducers", EEE 1988 Ultrasonics Symposium Proceedings, 643-654. https://doi.org/10.1109/ULTSYM.1988.49457.
  35. Lerch, R. (1990), "Simulation of piezoelectric devices by two- and three-dimensional finite elements", IEEE Trans. Ultrason., Ferroel. Freq. Control, 37(3), 233-247. https://doi.org/10.1109/58.55314.
  36. Lin, Y.C., Tseng, K.S. and Ma, C.C. (2021), "Investigation of resonant and energy harvesting characteristics of piezoelectric fiber composite bimorphs", Mater. Des., 197, 109267. https://doi.org/10.1016/j.matdes.2020.109267 .
  37. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
  38. Machu, Z., Rubes, O., Sevecek, O. and Hadas, Z. (2021) "Experimentally verified analytical models of piezoelectric cantilevers in different design configurations", Sensor., 21(20), 6759. https://doi.org/10.3390/s21206759.
  39. Malekzadeh Fard, K., Khajehdehi Kavanroodi, M., Malek-Mohammadi, H. and Pourmoayed, A. (2022), "Buckling and vibration analysis of a double-layer graphene sheet coupled with a piezoelectric nanoplate", J. Appl. Comput. Mech., 8(1), 129-143. https://doi.org/10.22055/JACM.2020.32145.1976.
  40. Malikan, M. (2017), "Electromechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Model., 48, 196-207. http://doi.org/10.1016/j.apm.2017.03.065.
  41. Malikan, M. and Eremeyev, V.A. (2020), "On Nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution", Nanomater., 10(9), 1762. https://doi.org/10.3390/nano10091762
  42. Malikan, M. and Eremeyev, V.A. (2021), "Flexomagnetic response of buckled piezomagnetic composite nanoplates", Compos. Struct., 267, 113932. https://doi.org/10.1016/j.compstruct.2021.113932
  43. Mechkour, H. (2022), "Modeling of perforated piezoelectric plates", Math. Comput. Appl., 27(6), 100. https://doi.org/10.3390/mca27060100
  44. Meeker, T.R. (1996), "Publication and proposed revision of ANSI/IEEE standard 176-1987", IEEE Trans. Ultrasonic. Ferroel. Freq. Control, 43(5), 717-772. https://doi.org/10.1109/TUFFC.1996.535477
  45. Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W. and Eltaher, M.A. (2022) "Dynamic analysis of a piezoelectrically layered perforated non-local strain gradient nanobeam with flexoelectricity", Math., 10(15), 2614. https://doi.org/10.3390/math10152614
  46. Mohammad, K.H. and Dehghani, R. (2022), "Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester", J. Appl. Comput. Mech., 8(1), 97-113. https://doi.org/10.22055/JACM.2019.30823.1785.
  47. Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
  48. Nadeem, M., He, J.H., He, C.H., Sedighi, H.M. and Shirazi, A. (2022), "A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform", Twms J. Pure Appl. Math., 13(2), 168-182.
  49. Najafi Ardekany, A. (2022), "Vibration stabilization of a flexible beam under fluid loading by utilizing piezoceramics", Iran. J. Sci. Technol., Trans. Mech. Eng., 46(4), 1001-1013. https://doi.org/10.1007/s40997-021-00463-z.
  50. Phung, M.V., Nguyen, D.T., Doan, L.T., Nguyen, D.V. and Duong, T.V. (2022), "Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors", Iran. J. Sci. Technol., Trans. Mech. Eng., 46(4), 1047-1065. https://doi.org/10.1007/s40997-021-00459-9.
  51. Ramegowda, P.C., Ishihara, D., Takata, R., Niho, T. and Horie, T. (2020b), "Hierarchically decomposed finite element method for a triply coupled piezoelectric, structure, and fluid fields of a thin piezoelectric bimorph in fluid", Comput. Meth. Appl. Mech. Eng., 365, 113006. https://doi.org/10.1016/j.cma.2020.113006.
  52. Ramegowda, P.C., Ishihara, D., Takata, R. and Horie, T. (2021), "Hierarchical modeling and finite element analysis of piezoelectric energy harvester from structure-piezoelectric-circuit interaction", 14th WCCMECCOMAS Congress 2020, January. https://doi.org/10.23967/wccm-eccomas.2020.163.
  53. Ramegowda, P.C., Ishihara, D., Takata, R., Niho, T. and Horie, T. (2020a), "Finite element analysis of a thin piezoelectric bimorph with a metal shim using solid direct-piezoelectric and shell inverse-piezoelectric coupling with pseudo direct-piezoelectric evaluation", Compos. Struct., 245, 112284. https://doi.org/10.1016/j.compstruct.2020.112284.
  54. Shabara, M., Rahman Badawi, A. and Xu, T.B. (2020), "Comprehensive piezoelectric material application issues on energy harvesting for artificial intelligence systems", AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-1862.
  55. Shevtsova, M., Nasedkin, A., Shevtsov, S., Zhilyaev, I. and Chang, S. (2016), "An optimal design of underwater piezoelectric transducers of new generation", Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece.
  56. Silva, P.B., Mencik, J.M. and Arruda, J.R. (2016), "On the use of the wave finite element method for passive vibration control of periodic structures", Adv. Aircraft Spacecraft Sci., 3(3), 299. https://doi.org/10.12989/aas.2016.3.3.299.
  57. Su, H., Sui, L., Song, P. and Lu, Y. (2019), "Theoretical analysis and experimental study of a perforated piezoelectric cantilever", IOP Conf. Ser.: Mater. Sci. Eng., 563(3), 032039. https://doi.org/10.1088/1757-899X/563/3/032039.
  58. Wang, L., Wu, Z., Liu, S., Wang, Q., Sun, J., Zhang, Y., ... & Maeda, R. (2022), "Uniform stress distribution of bimorph by arc mechanical stopper for maximum piezoelectric vibration energy harvesting", Energi., 15(9), 3268. https://doi.org/10.3390/en15093268.
  59. Wang, S.Y. (2004), "A finite element model for the static and dynamic analysis of a piezoelectric bimorph", Int. J. Solid. Struct., 41(15), 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058.