DOI QR코드

DOI QR Code

사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site

  • 김단우 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 전소영 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 김선옥 (부경대학교 에너지 자원공학과) ;
  • 왕수균 (부경대학교 에너지 자원공학과) ;
  • 이민희 (부경대학교 지구환경시스템과학부 환경지질과학전공)
  • Danu Kim (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Soyoung Jeon (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Seon-ok Kim (Department of Energy Resources Engineering, Pukyong National University) ;
  • Sookyun Wang (Department of Energy Resources Engineering, Pukyong National University) ;
  • Minhee Lee (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University)
  • 투고 : 2023.02.17
  • 심사 : 2023.04.01
  • 발행 : 2023.04.28

초록

사용 후 핵연료(SNF: spent nuclear fuel) 지하 처분장에서 발생된 가스는 처분장 내에서 자체로 이동성이 클 뿐 아니라, 처분장 내 방사성핵종 거동에도 영향을 줄 수 있다. 지하 처분장 방벽 내에서 가스-핵종 발생 및 거동 기작에 대한 연구와 가스 거동이 처분장의 안전성에 미치는 영향에 대한 연구가 처분장 건설 이전에 충분히 수행되어져야 함에도 불구하고, 처분장 다중 방벽내 가스-핵종 거동에 대한 연구는 국내는 물론 국외에서 조차 매우 초보적인 단계이다. 본 연구에서는 지하 SNF 처분장 내 가스 발생과 거동 특성과 관련된 국내외 선행연구 결과들을 고찰하여, 가스 발생/거동 기작을 처분장의 수리지질학적 진화과정에 따라 분류하여 설명하였다. 처분장 내 가스 발생을 크게 SNF의 핵분열에 의한 방사성 가스 생성, SNF 저장 용기의 부식에 의한 가스 발생, 지하수의 산화-환원 반응에 의한 가스 생성, 미생물 활동과 천연 방벽 내 지화학적 반응에 의한 가스 생성 등 총 5가지 유형으로 구분하여 정리하였다. 처분장 다중 방벽 내 가스 거동과 관련된 선행연구 자료들을 정리하여, 방벽 내 가스 거동 시나리오를 다공성 매체에서 일어나는 거동 형태에 따라, 총 4가지 형태(① visco-capillary 흐름을 포함하는 공극 내 자유상 가스 이동, ② 공극 수 내 용존상 기체로서 이류 및 확산 이동, ③ 체적팽창에 의한 거동(dilatant pathway), ④ 가압파쇄에 의한 인장 절리 흐름 등)로 구분하여 제시하였다. 본 연구를 통해 고찰한 SNF 처분장의 다중 방벽 시스템 내 가스 발생 기작과 거동 특성자료들은, 향 후 지하 SNF 처분장 내 가스-핵종 거동관련 다양한 실험 및 모델링 연구를 계획하고, 국내 건설할 처분장의 안전성을 가스 거동관점에서 평가하는데 유용하게 사용될 것으로 기대한다.

Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(No.2021M2E1A1085202)을 받아 수행되었습니다.

참고문헌

  1. Allen, A. O., Hochanadel, C. J., Ghormley, J. A. and Davis, T. W. (1952) Decomposition of water and aqueous solutions under mixed fast neutron and γ-radiation. The Journal of Physical Chemistry, v.56(5), p.575-586. doi: 10.1021/j150497a007.
  2. Ballentine, C. J. and Burnard, P. G. (2002) Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, v.47(1), p.481-538. doi: 10.2138/rmg.2002.47.12.
  3. Bennett, D. G. and Gens, R. (2008) Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. Journal of Nuclear Materials, v.379(1-3), p.1-8. doi: 10.1016/j.jnucmat.2008.06.001.
  4. Bond, A. E., Hoch, A. R., Jones, G. D., Tomczyk, A. J., Wiggin, R. M. and Worraker, W. J. (1997) Assessment of a spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component. SKB-TR-97-19.
  5. Bougault, H., Charlou, J. L., Fouquet, Y., Needham, H. D., Vaslet, N., Appriou, P., Baptise, P. J., Rona, P. A., Dmitriev, L. and Silantiev, S. (1993) Fast and slow spreading ridges: structure and hydrothermal activity, ultramafic topographic highs, and CH4 output. Journal of Geophysical Research: Solid Earth, v.98(B6), p.9643-9651. doi: 10.1029/93JB00508
  6. Bourgeat, A., Jurak, M. and Smai, F. (2009) Two-phase, partially miscible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository. Computational Geosciences, v.13, p.29-42. doi: 10.1007/s10596-008-9102-1.
  7. Carbol, P. and Spahiu, K. (2005) The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s) high burn-up spent fuel and MOX fuel. Swedish Nuclear Fuel and Waste Management Co. SKB-TR-05-09.
  8. Cho, W. J., Kim, J. S., Lee, C. and Choi, H. J. (2012) Current status of the numerical models for the analysis of coupled thermalhydrological-mechanical behavior of the engineered barrier system in a high-level waste repository. Journal of Nuclear Fuel Cycle and Waste Technology, v.10(4), p.281-294. doi: 10.7733/jkrws.2012.10.4.281.
  9. Cui, L. Y., Ye, W. M., Wang, Q., Chen, Y. G., Chen, B. and Cui, Y. J. (2021) Insights into gas migration behavior in saturated GMZ bentonite under flexible constraint conditions. Construction and Building Materials, v.287, p.123070. doi:10.1016/j.conbuildmat.2021.123070.
  10. D&DCOATINGS (2023) Pitting Corrosion Online: https://www.ddcoatings.co.uk/2276/what-is-pitting-corrosion (accessed on 14 February 2023).
  11. Delos, A., Trinchero, P., Richard, L., Molinero, J., Dentz, M. and Pitkanen, P. (2010) Quantitative assessment of deep gas migration in Fennoscandian site. Swedish Nuclear Fuel and Waste Management Co. SKB-R-10-61.
  12. Ewing, R. C. (2015) Long-term storage of spent nuclear fuel. Nature Materials, v.14(3), p.252-257. doi: 10.1038/nmat4226.
  13. Gascoyne, M. (2005) Dissolved gases in groundwaters at Olkiluoto. Posiva Working Report, 56.
  14. Graham, C. C., Harrington, J. F., Cuss, R. J. and Sellin, P. (2012) Gas migration experiments in bentonite: implications for numerical modelling. Mineralogical Magazine, v.76(8), p.3279-3292. doi:10.1180/minmag.2012.076.8.41.
  15. Hansson, N. L., Tam, P. L., Ekberg, C. and Spahiu, K. (2021) XPS study of external α-radiolytic oxidation of UO2 in the presence of argon or hydrogen. Journal of Nuclear Materials, v.543, p.152604. doi: 10.1016/j.jnucmat.2020.152604.
  16. Hao, O. J., Chen, J. M., Huang, L. and Buglass, R. L. (1996) Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology, v.26(2), p.155-187. doi: 10.1080/10643389609388489.
  17. Hochanadel, C. J. (1952) Effects of cobalt γ-radiation on water and aqueous solutions. The Journal of Physical Chemistry, v.56(5), p.587-594. doi: 10.1021/j150497a008.
  18. Horseman, S. T., Harrington, J. F. and Sellin, P. (1999) Gas migration in clay barriers. Engineering Geology, v.54(1-2), p.139-149. doi:10.1016/S0013-7952(99)00069-1.
  19. Huttunen-Saarivirta, E., Rajala, P. and Carpen, L. (2016) Corrosion behaviour of copper under biotic and abiotic conditions in anoxic ground water: Electrochemical study. Electrochimica Acta, v.203, p.350-365. doi: 10.1016/j.electacta.2016.01.098.
  20. IAEA. (2003) Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes. International Atomic Energy Agency. Technical Reports Series, 413.
  21. Jacops, E., Maes, T., Maes, N., Volckaert, G., Weetjens, E. and Sillen, X. (2015) Gas-driven radionuclide transport in undisturbed and disturbed Boom Clay. Geological Society, London, Special Publications, v.415(1), p.9-17. doi: 10.1144/SP415.10.
  22. Jeon, Y., Gwon, D. Y., Han, J., Choi, W. C. and Kim, Y. (2021) A literature review on application of signature materials in nuclear forensics according to domestic nuclear facilities and fuel cycle. Journal of the Korean Society of Radiology, v.15(1), p.37-43. doi: 10.7742/jksr.2021.15.1.37.
  23. Johnson, L., Marschall, P., Zuidema, P. and Gribi, P. (2004) Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay. National Cooperative for the Disposal of Radioactive Waste (NAGRA). NTB-04-06.
  24. Jung, H., Kim, H. J., Cheong, J. Y., Lee, E. Y. and Yoon, J. H. (2013) Analysis of siting criteria of overseas geological repository (II): Hydrogeology. Journal of Nuclear Fuel Cycle and Waste Technology, v.11(3), p.253-257. doi: 10.7733/jnfcwtk.2013.11.3.253.
  25. KAERI (2006) "High-level radwaste disposal technology development - HLW disposal system development," KAERI/RR-2765.
  26. KHNP (2023) Status of spent nuclear fuel storage in the fourth quarter of 2022. https://npp.khnp.co.kr/board/view.khnp?boardId=BBS_0000015&menuCd=DOM_000000103004007000&orderBy=REGISTER_DATE%20DESC&startPage=1&dataSid=10072
  27. Kim, K. I., Lee, C. and Kim, J. S. (2021) A numerical study of the performance assessment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste. Tunnel and Underground Space, v.31(4), p.221-242. doi: 10.7474/TUS.2021.31.4.221.
  28. Kim, Y. J., Ju, Y. S., Heo, G. S., Jin, Y. G., An, S. B. and Jeon, Y. B. (2015) A preliminary study on the evaluation of the integrity of spent nuclear fuel after dry storage in wolseong heavy water reactor. Korean Radioactive Waste Society, In proceedings of the Korean Radioactive Waste Society Conference, p. 137-138.
  29. King, F. and Kolar, M. (2019) Lifetime predictions for nuclear waste disposal containers. Corrosion, v.75(3), p.309-323. doi: 10.5006/2994.
  30. King, F., Kolar, M. and Maak, P. (2008) Reactive-transport model for the prediction of the uniform corrosion behaviour of copper used fuel containers. Journal of Nuclear Materials, v.379(1-3), p.133-141. doi: 10.1016/j.jnucmat.2008.06.017.
  31. King, F., Kolar, M., Vahanen, M. and Lilja, C. (2011) Modelling long term corrosion behaviour of copper canisters in KBS-3 repository. Corrosion Engineering, Science and Technology, v.46(2), p.217-222. doi: 10.1179/18211Y.0000000004.
  32. King, F., Lilja, C. and Vahanen, M. (2013) Progress in the understanding of the long-term corrosion behaviour of copper canisters. Journal of Nuclear Materials, v.438(1-3), p.228-237. doi: 10.1016/j.jnucmat.2013.02.080.
  33. Kong, D., Dong, C., Xu, A., Man, C., He, C. and Li, X. (2017) Effect of sulfide concentration on copper corrosion in anoxic chloride-containing solutions. Journal of Materials Engineering and Performance, v.26, p.1741-1750. doi: 10.1007/s11665-017-2578-x.
  34. Kwon, S. and Cho, W.J. (2007) Rock mechanics studies at the KAERI underground research tunnel for High-Level radioactive waste disposal. Tunnel and Underground Space, v.17(1), p.43-55.
  35. Lee, C., Yoon, S., Cho, W. J., Jo, Y., Lee, S., Jeon, S. and Kim, G. Y. (2019) Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite. Journal of Nuclear Fuel Cycle and Waste Technology, v.17, p.65-80. doi: 10.7733/jnfcwt.2019.17.S.65.
  36. Lee, G. J., Yoon, S., Kim, T. and Kim, J. S. (2022) Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials. Tunnel and Underground Space, v.32(1), p.59-77. doi: 10.7474/TUS.2022.32.1.059.
  37. Lee, J. O. and Cho, W. J. (2007) Thermal-hydro-mechanical behaviors in the engineered barrier of a HLW repository: engineering-scale validation test. Tunnel and Underground Space, v.17(6), p.464-474.
  38. Lee, J., Cho, D., Choi, H. and Choi, J. (2007) Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, v.44(12), p.1565-1573. doi: 10.1080/18811248.2007.9711407.
  39. Lee, J., Kim, I., Choi, H. and Cho, D. (2019) An improved concept of deep geological disposal system considering arising characteristics of spent fuels from domestic nuclear power plants. Journal of Nuclear Fuel Cycle and Waste Technology, v.17(4), p.405-418. doi: 10.7733/jnfcwt.2019.17.4.405.
  40. Lollar, B. S., Frape, S. K., Weise, S. M., Fritz, P., Macko, S. A. and Welhan, J. A. (1993) Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta, v.57(23-24), p.5087-5097. doi: 10.1016/0016-7037(93)90610-9.
  41. Marja-aho, M., Rajala, P., Huttunen-Saarivirta, E., Legat, A., Kranjc, A., Kosec, T. and Carpen, L. (2018) Copper corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and absence of sulfate reducing bacteria. Sensors and Actuators A: Physical, v.274, p.252-261. doi: 10.1016/j.sna.2018.03.018.
  42. Marschall, P., Horseman, S. and Gimmi, T. (2005) Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal. Oil & Gas Science and Technology, v.60(1), p.121-139. doi: 10.2516/ogst:2005008.
  43. McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquo, T. S., Jons, N., Bach, W. and Templeton, A. (2016) Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochimica et Cosmochimica Acta, v.181, p.175-200. doi: 10.1016/j.gca.2016.03.002.
  44. Muyzer, G. and Stams, A. J. (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441-454. doi: 10.1038/nrmicro1892.
  45. Neretnieks, I. and Ernstson, M. L. (1996) A note on radionuclide transport by gas bubbles. MRS Online Proceedings Library (OPL), 465. doi: 10.1557/proc-465-855.
  46. Ochoa, M., Rodriguez Martin, A. and Farina Silvia, B. (2013) Corrosion of high purity copper as engineering barrier in deep geological repositories; Corrosion de cobre de alta pureza como barrera ingenieril en repositorios geologicos profundos. Asociacion Argentina de Tecnologia Nuclear. INIS-AR-C-1704
  47. Park, M. H. (2011) Improving the safety of Korean nuclear power plants through Fukushima nuclear power plant accidents. Plant Journal, v.7(4), p.17-39.
  48. Pitkanen, P. and Partamies, S. (2007) Origin and implications of dissolved gases in groundwater at Olkiluoto (Vol. 4). Posiva.
  49. Posiva Oy. (2020) Image Gallery. Available online: https://www.posiva.fi/en/index/media/material.html (accessed on 13 February 2023).
  50. Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J. F., Barthe, M. F., Garrido, F. and Gosset, D. (2001) Alpha-radiolysis effects on UO2 alteration in water. Journal of Nuclear Materials, v.288(1), p.11-19. doi: 10.1016/S0022-3115(00)00714-5.
  51. Schoell, M. (1988) Multiple origins of methane in the Earth. Chemical Geology, v.71(1-3), p.1-10. doi: 10.1016/0009-2541(88)90101-5.
  52. Smart, N. R., Blackwood, D. J. and Werme, L. (2002) Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: part 1-electrochemical aspects. Corrosion, v.58(7), p.547-559. doi: 10.5006/1.3277646.
  53. Sunder, S., Boyer, G. D. and Miller, N. H. (1990) XPS studies of UO2 oxidation by alpha radiolysis of water at 100℃. Journal of Nuclear Materials, v.175(3), p.163-169. doi: 10.1016/0022-3115(90)90201-W.
  54. Taylor, R. (2015). Reprocessing and recycling of spent nuclear fuel. Elsevier. p.35, 246
  55. Thauer, R. K., Jungermann, K. and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100-180. https://doi.org/10.1128/br.41.1.100-180.1977
  56. Uhlig, H. H. and Revie, R. W. (2008). Corrosion and corrosion control: an introduction to corrosion science and engineering (4th ed.). John Wiley & Sons, p.11-13.
  57. Ustolin, F., Paltrinieri, N. and Berto, F. (2020) Loss of integrity of hydrogen technologies: A critical review. International Journal of Hydrogen Energy, v.45(43), p.23809-23840. doi: 10.1016/j.ijhydene.2020.06.021.
  58. Valko, P. and Economides, M. J. (1995) Hydraulic fracture mechanics, John Wiley & Sons, New York, p.318.
  59. Vertes, A., Nagy, S., Klencsar, Z., Lovas, R. G. and Rosch, F. (Eds.). (2003) Handbook of nuclear chemistry (Vol. 4). p.1284-1285. doi: 10.1007/978-1-4419-0720-2.
  60. Wada, Y., Kawaguchi, K. and Myouchin, M. (1995) Decomposition of water and production of H2 using semiconductor-photocatalytic effect induced by gamma ray from high radioactive waste. Progress in Nuclear Energy, v.29, p.251-256. doi: 10.1016/0149-1970(95)00050-T.
  61. Whiticar, M. J. (1990) A geochemial perspective of natural gas and atmospheric methane. Organic Geochemistry, v.16(1-3), p.531-547. doi: 10.1016/0146-6380(90)90068-B.
  62. Wikramaratna, R. S., Goodfield, M., Rodwell, W. R., Nash, P. J. and Agg, P. J. (1993) A preliminary assessment of gas migration from the copper/steel canister. Swedish Nuclear Fuel and Waste Management Co. SKB-TR--93-31.
  63. Xu, L., Ye, W. M. and Ye, B. (2017) Gas breakthrough in saturated compacted GaoMiaoZi (GMZ) bentonite under rigid boundary conditions. Canadian Geotechnical Journal, v.54(8), p.1139-1149. doi: 10.1139/cgj-2016-0220.
  64. Ye, W. M., Xu, L., Chen, B., Chen, Y. G., Ye, B. and Cui, Y. J. (2014) An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite. Engineering Geology, v.169, p.124-132. doi: 10.1016/j.enggeo.2013.12.001.
  65. Zhang, M., Zhang, H., Zhou, L., Wang, B. and Wang, S. (2014) Hydro-mechanical analysis of GMZ bentonite-sand mixtures in the water infiltration process as the buffer/backfill mixture in an engineered nuclear barrier. Applied Clay Science, v.97, p.115-124. doi: 10.1016/j.clay.2014.05.016.