DOI QR코드

DOI QR Code

오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments

  • 김동현 (홍익대학교 건설환경공학과) ;
  • 박형준 (홍익대학교 건설환경공학과) ;
  • 방영준 (한국수자원조사기술연구원 연구기획팀) ;
  • 이승오 (홍익대학교 건설환경공학과)
  • Dong Hyun Kim (Department of Civil and Environmental Engineering, Hongik University) ;
  • Hyung Jun Park (Department of Civil and Environmental Engineering, Hongik University) ;
  • Young Jun Bang (Research Business Division, Korea Institute of Hydrological Survey) ;
  • Seung Oh Lee (Department of Civil and Environmental Engineering, Hongik University)
  • 투고 : 2023.11.28
  • 심사 : 2023.12.23
  • 발행 : 2023.12.31

초록

세계적으로 온실가스 감축을 위해 주로 이산화탄소 발생에 초점을 맞춰왔지만, 최근에는 메탄 발생에 대한 관심이 커지고 있다. 습지, 저수지, 호소 등 수중 환경을 포함한 자연은 온실 가스 중요한 발원지이다. 호수와 저수지 바닥에 쌓인 퇴적된 유기 오염물질은 산소가 부족한 상태에서 미생물 분해를 통해 메탄과 같은 온실 가스를 생성할 수 있다. 메탄 배출은 비점오염원의 증가와 하천에 설치되는 횡단 구조물에 의한 흐름변화에 의해 증가하고 있는 실정이다. 또한, 기후 변화로 인한 수온의 상승 등은 메탄 배출을 가속화하는 원인이다. 메탄은 다양한 경로를 통해 대기로 배출될 수 있다. 따라서, 본 연구에서는 메탄발생의 주요인자가 미치는 영향을 정량화하기 위하여 BMP test을 수행하였다. 실험조건에 따라 메탄발생량을 직접 계측하였으며, 실험조건은 온도, 기질의 종류, 전단응력 및 퇴적물 특성으로 구분하였다. 또한, 바닥의 전단 응력은 실험적으로 측정하기가 어려워 수치모의를 수행하였다. 실험결과, 생화학적 요소는 메탄 생성에 영향을 미치지만, 전단 속도는 메탄 분리에 영향을 미치는 것으로 나타났으며, 퇴적물 특성은 메탄 생성 및 분리에 영향을 미칠 수 있다. 메탄 생성과 주요인자들 간의 관계를 경험식으로 제시하였으며, 향후 전단응력 및 유기물에 대한 실험조건을 구체화하고 실험규모를 확대한다면 메탄발생과 생지화학 및 수환경인자간의 관계를 도출할 수 있을 것으로 기대된다.

The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2021R1A2C2013158).

참고문헌

  1. An, Ji-Hyuck and Khil-Ha Lee. (2013). Correlation and Hysteresis Analysis of Air-Water Temperature in Four Rivers: Preliminary Study for Water Temperature Prediction. Journal of Environmental Policy. 12(2): 17-32. https://doi.org/10.17330/joep.12.2.201306.17
  2. Bastviken, D., J. Cole, M. Pace, and L. Tranvik. (2004). Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate. Global Biogeochemical Cycles. 18(4).
  3. Dixon, A. G., G. Walls, H. Stanness, M. Nijemeisland, and E. H. Stitt. (2012). Experimental Validation of High Reynolds Number CFD Simulations of Heat Transfer in a Pilot-Scale Fixed Bed Tube. Chemical Engineering Journal. 200: 344-356.
  4. Garcia, M. (2008). Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. American Society of Civil Engineers. 959-981.
  5. Hamdan, L. J. and K. P. Wickland. (2016). Methane Emissions from Oceans, Coasts, and Freshwater Habitats: New Perspectives and Feedbacks on Climate. Limnology and Oceanography. 61(S1), S3-S12. https://doi.org/10.1002/lno.10449
  6. Joyce, J. and P. W. Jewell. (2003). Physical Controls on Methane Ebullition from Reservoirs and Lakes. Environmental & Engineering Geoscience. 9(2): 167-178. https://doi.org/10.2113/9.2.167
  7. Kalff, J. (2004). Limnology, Inland Water Ecosystem. Prentice Hall. 174-178.
  8. Katsman, R., I. Ostrovsky, and Y. Makovsky. (2013). Methane Bubble Growth in Fine-Grained Muddy Aquatic Sediment: Insight from Modeling. Earth and Planetary Science Letters. 377: 336-346. https://doi.org/10.1016/j.epsl.2013.07.011
  9. Katsnelson, B., R. Katsman, A. Lunkov, and I. Ostrovsky. (2017). Acoustical Methodology for Determination of Gas Content in Aquatic Sediments, with Application to Lake Kinneret, Israel, as a Case Study. Limnology and Oceanography: Methods. 15(6): 531-541. https://doi.org/10.1002/lom3.10178
  10. Kazumi, J. M. E. C., M. E. Caldwell, J. M. Suflita, D. R. Lovley, and L. Y. Young. (1997). Anaerobic Degradation of Benzene in Diverse Anoxic Environments. Environmental Science & Technology. 31(3): 813-818. https://doi.org/10.1021/es960506a
  11. Langenegger, T., D. Vachon, D. Donis, and D. F. McGinnis. (2019). What the Bubble Knows: Lake Methane Dynamics Revealed by Sediment Gas Bubble Composition. Limnology and Oceanography. 64(4): 1526-1544. https://doi.org/10.1002/lno.11133
  12. Levich, V. G. and C. W. Tobias. (1963). Physicochemical Hydrodynamics. Journal of the Electrochemical Society. 110(11): 251C.
  13. Linkhorst, A., C. Hiller, T. DelSontro, G. M. Azevedo, N. Barros, R. Mendonca, and S. Sobek. (2020). Comparing Methane Ebullition Variability Across Space and Time in a Brazilian Reservoir. Limnology and Oceanography. 65(7): 1623-1634. https://doi.org/10.1002/lno.11410
  14. Liu, L. (2019). Mechanisms of Methane Bubble Formation, Storage and Release in Freshwater Sediments, Doctoral Dissertation. Universitat Koblenz-Landau. 51-63.
  15. Liu, L., Z. J. Yang, K. Delwiche, L. H. Long, J. Liu, D. F. Liu, C. F. Wang, P. Bodmer, and A. Lorke. (2020). Spatial and Temporal Variability of Methane Emissions from Cascading Reservoirs in the Upper Mekong River. Water Research. 186: 116319.
  16. Liu, Y. (1996). Bioenergetic Interpretation on the S0X0 Ratio in Substrate-Sufficient Batch Culture. Water Research. 30(11): 2766-2770. https://doi.org/10.1016/S0043-1354(96)00157-1
  17. Maeck, A., T. DelSontro, D. F. McGinnis, H. Fischer, S. Flury, M. Schmidt, P. Fietzek, and A. Lorke. (2013). Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environmental Science & Technology. 47(15): 8130-8137. https://doi.org/10.1021/es4003907
  18. McGinnis, D. F., J. Greinert, Y. Artemov, S. E. Beaubien, and A. N. D. A. Wuest. (2006). Fate of Rising Methane Bubbles in Stratified Waters: How Much Methane Reaches the Atmosphere?. Journal of Geophysical Research: Oceans. 111(C9).
  19. McInerney, M. J., M. P. Bryant, and D. A. Stafford. (1979). Metabolic Stages and Energetics of Microbial Anaerobic Digestion. Anaerobic Digestion: Proceedings of the First International Symposium on Anaerobic Digestion.
  20. Owen, W. F., D. C. Stuckey, J. B. Healy Jr, L. Y. Young, and P. L. McCarty. (1979). Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Research. 13(6): 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  21. Perez-Dominguez, I., A. Del Prado, K. Mittenzwei, J. Hristov, S. Frank, A. Tabeau, and M. J. Sanz-Sanchez. (2021). Short- and Long-Term Warming Effects of Methane May Affect the Cost-Effectiveness of Mitigation Policies and Benefits of Low-Meat Diets. Nature Food. 2(12): 970-980. https://doi.org/10.1038/s43016-021-00385-8
  22. Seibert, M., P. W. King, M. C. Posewitz, A. Melis, and M. L. Ghirardi. (2008). Photosynthetic Water-Splitting for Hydrogen Production. In J. D. Wall et al. (ed.) Bioenergy. Washington, D.C.: ASM Press. 273-291.
  23. Sills, G. C., S. J. Wheeler, S. D. Thomas, and T. N. Gardner. (1991). Behaviour of Offshore Soils Containing Gas Bubbles. Geotechnique. 41(2): 227-241. https://doi.org/10.1680/geot.1991.41.2.227
  24. Silva, A. J. and H. G. Brandes. (1998). Geotechnical Properties and Behavior of High-Porosity, Organic-Rich Sediments in Eckernforde Bay, Germany. Continental Shelf Research. 18(14-15): 1917-1938. https://doi.org/10.1016/S0278-4343(98)00063-6
  25. Sinokrot, B. A. and H. G. Stefan. (1993). Stream Temperature Dynamics: Measurements and Modeling. Water Resources Research. 29(7): 2299-2312. https://doi.org/10.1029/93WR00540
  26. Stockle, C. O., P. T. Dyke, J. R. Williams, C. A. Jones, and N. J. Rosenberg. (1992). A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops: Part II-Sensitivity Analysis at Three Sites in the Midwestern USA. Agricultural Systems. 38: 239-256. https://doi.org/10.1016/0308-521X(92)90068-Y
  27. Tokida, T., T. Miyazaki, M. Mizoguchi, O. Nagata, F. Takakai, A. Kagemoto, and R. Hatano. (2007). Falling Atmospheric Pressure as a Trigger for Methane Ebullition from Peatland. Global Biogeochemical Cycles. 21(2).
  28. Tuser, M., T. Picek, Z. Sajdlova, T. Juza, M. Muska, and J. Frouzova. (2017). Seasonal and Spatial Dynamics of Gas Ebullition in a Temperate Water-Storage Reservoir. Water Resources Research. 53(10): 8266-8276. https://doi.org/10.1002/2017WR020694
  29. Wang, L., D. C. Tsang, and C. S. Poon. (2015). Green Remediation and Recycling of Contaminated Sediment by Waste-Incorporated Stabilization/Solidification. Chemosphere. 122: 257-264. https://doi.org/10.1016/j.chemosphere.2014.11.071
  30. Warneck, P. (1999). Chemistry of the Natural Atmosphere (Vol. 71). Elsevier. 158-205.
  31. Yazdandoost, F. and J. Attari. (2004). Hydraulics of Dams and River Structures. Proceedings of the International Conference. CRC Press. 117-125.