DOI QR코드

DOI QR Code

Assessment of Wave Change considering the Impact of Climate Change

기후변화 영향을 고려한 파랑 변화 평가

  • Chang Kyum Kim (Marine.Disaster Prevention Project Team, Sea&River Technology) ;
  • Ho Jin Lee (School of Civil Engineering, Chungbuk National University) ;
  • Sung Duk Kim (School of Civil Engineering, Chungbuk National University) ;
  • Byung Cheol Oh (Office of CEO, Sea&River Technology) ;
  • Ji Eun Choi (Marine.Disaster Prevention Project Team, Sea&River Technology)
  • 김창겸 ((주)해강기술 해양.방재사업팀) ;
  • 이호진 (충북대학교 토목공학부) ;
  • 김성덕 (충북대학교 토목공학부) ;
  • 오병철 ((주)해강기술 대표이사실) ;
  • 최지은 ((주)해강기술 해양.방재사업팀)
  • Received : 2023.11.28
  • Accepted : 2023.12.23
  • Published : 2023.12.31

Abstract

According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

미래 기후 시나리오에 따르면 우리나라 자연재해의 주요 요인인 태풍의 강도는 강해질 것으로 전망된다. 태풍 강도 증가는 내습 파고 상승으로 이어져 주거, 산업, 관광 등의 용도로 인구 및 건물 밀집도가 높은 연안 지역의 대규모 피해발생 가능성이 높은 상황이다. 따라서 본 연구에서는 동해 해양기상부이 관측자료를 분석하여 최대 유의파고가 나타난 태풍 마이삭(202009) 내습 기간에 대해 파랑추산 수치모형실험을 수행하였다. 파랑추산실험 경계조건은 JMA-MSM의 바람장과 SSP5-8.5 미래 기후 시나리오의 태풍 중심기압 감소율을 적용한 바람장을 사용하였다. 파랑추산실험 결과 SSP5-8.5 시나리오에서 속초항 방파제 전면에서의 파고는 4.06 m에서 4.68 m로 15.27% 증가하였다. 또한, 심해설계파 147-2 격자점 위치에서의 재현빈도는 최소 2배 이상 증가하는 것으로 산출되어, 현재 해안구조물 설계 시 관행적으로 적용하는 50년 재현빈도 심해설계파에 대한 제고가 필요하다.

Keywords

Acknowledgement

This Research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (00254781).

References

  1. APEC Climate Center. (2022). Enhancing Climate Information and Establishing Integrated Information System to Cope with Extreme Climates. Busan: APCC.
  2. Atkinson, G. D. and C. R. Holliday. (1977). Tropical Cyclone Minimum Sea Level Pressure/Maximum Sustained Wind Relationship for the Western North Pacific. Monthly Weather Review. 105(4): 421-427. https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2
  3. Dvorak, V. F. (1975). Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery. Monthly Weather Review. 103(5): 420-430. https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
  4. Fletcher, R. D. (1955). Computation of Maximum Surface Winds in Hurricanes. Bulletin of the American Meteorological Society. 36(6): 246-250. https://doi.org/10.1175/1520-0477-36.6.246
  5. Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review. 108(8): 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
  6. Kang, See Whan, Ki Cheon Jun, Kwang Soon Park, and Gyeong Hun Bang. (2002). A Comparison of Typhoon Wind Models with Observed Winds. 「The Sea」 Journal of the Korea Society of Oceanography. 7(3): 100-107.
  7. Korea Meteorological Administration. (2023). National Climate Data Center (http://data.kma.go.kr). Daejeon: KMA.
  8. Korea Meteorological Administration. (2023). Official Homepage (http://weather.go.kr). Daejeon: KMA.
  9. Ministry of Oceans and Fisheries. (2019). Report of the Estimation of Deep Water Design Waves of Korea. Sejong: MOF.
  10. Ministry of Oceans and Fisheries. (2020). Analysis and Prediection of Sea Level Change in Response to Climate around Korean Peninsula (5). Sejong: MOF.
  11. Ministry of the Interior and Safety. (2022). The 2021 Disaster Annual Report. Sejong: MOIS.
  12. Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki. (2006). The Operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review. 134(4): 1266-1298. https://doi.org/10.1175/MWR3120.1
  13. Schloemer, R. W. (1954). Analysis and Synthesis of Hurricane Wind Patterns over Lake Okeechobee. U.S. Department of Commerce Weather Bureau. Hydro Meteorological Report 31. 53p.
  14. SPM. (1984). Shore Protection Manual. U.S. Army Corps of Engineers. 1: 532.