DOI QR코드

DOI QR Code

Effect of cold water immersion after rowing ergometer on blood fatigue substance, reactive oxygen species and anti-oxidation enzyme in rowing athletes

조정 선수의 로잉 에르고미터 수행 후 저온침수 처치가 혈중 피로 물질, 활성산소 및 항산화 효소에 미치는 영향

  • Hyun-Wook Hong (Department of Physical Education, Pusan National University) ;
  • Su-han Koh (Department of Physical Education, Pusan National University) ;
  • Tae-kyu Kim (Department of Physical Education, Pusan National University) ;
  • Min-Kyo Kim (Department of Physical Education, Pusan National University) ;
  • Do-yeon Kim (Department of Physical Education, Pusan National University)
  • 홍현욱 (부산대학교 체육교육과) ;
  • 고수한 (부산대학교 체육교육과) ;
  • 김태규 (부산대학교 체육교육과) ;
  • 김민교 (부산대학교 체육교육과) ;
  • 김도연 (부산대학교 체육교육과)
  • Received : 2023.07.25
  • Accepted : 2023.08.18
  • Published : 2023.08.31

Abstract

The purpose of this study is to help a recovery of fatigue through the effect of cold immersion treatment after rowing ergometer on blood fatigue substance, MDA and SOD in rowing athletes. For this, 10 subjects participated in this study and we divided them into cold water immersion group (CWI, n=10), non-cold immersion group (NCI, n=10). The exercise program was performed to 2000 m rowing ergometer for maintaining high intensity. The data was collected with regard to the interaction effect of the group and time among the CWI and NCI, ANOVA was used. As the post-hoc test, Bonferroni test was used. The significance was set at .05 and the following conclusions were deduced. For lactic acid, there were the main effect of time (p<.001) and significant difference in the both group (p<.001). Also, LDH were significant difference in the each group (p<.05). For MDA, there were the interaction between group and time (p<.05) and the main effect of group (p<.05) and time (p<.001). SOD were indicated main effect of group and time (p<.05), there was significant difference between each group in the after 30 min recovery (p<.05). Collectively, The results of this study suggest that positive effect on blood fatigue substances, reactive oxygen species and anti-oxidation enzyme through cold water immersion intervention. Therefore, we strongly recommend that performing the cold immersion intervention would be beneficial after high intervention exercise.

본 연구의 목적은 남자 대학 엘리트 조정선수의 2000 m 로잉 에르고미터 수행 후 저온침수 처치를 통해 혈중 젖산, LDH, MDA 및 SOD의 변화에 긍정적인 영향을 주어 피로 회복에 미치는 영향을 구명하는 데 있다. 이에 남자 대학 엘리트 조정선수 10명을 대상으로 고강도 로잉 에르고미터 2,000 m 수행 후 비 처치와 저온 침수 처치의 효과를 비교하였다. 측정 변인들에 대한 결과를 검증하기 위해 처치 및 시기 간 상호작용 효과를 분석하기 위해 ANOVA를 실시하였고 각 항목별 유의수준 .05로 설정하여 다음의 결과를 도출하였다. 젖산은 시기 간 주효과가 나타났고(p<.001) 그룹 내 시기별 차이가 났다(p<.001). 또한, LDH는 그룹 내 시기별 차이가 나타났다(p<.05). MDA는 그룹×시기 간 상호작용 효과가 나타났고(p<.05), 그룹 간(p<.05), 시기 간(p<.001) 주효과가 나타났다. SOD는 그룹 간, 시기 주효과가 나타났고(p<.05) 회복 30분 후 그룹 간 차이가 나타났다(p<.05). 이를 종합해 볼 때, 본 연구에서 실시한 저온침수 처치가 조정 선수의 혈중 피로 물질, 활성산소 및 항산화 효소에 유의한 효과를 나타냈다. 따라서 운동선수의 고강도 훈련 후 저온침수를 적극 활용할 것을 권장한다.

Keywords

References

  1. F. Dolci, A. E. Kilding, P. Chivers, B. Piggott, N. H. Hart, "High-intensity interval training shock microcycle for enhancing sport performance: A brief review", The Journal of Strength & Conditioning Research, Vol.34, No.4 pp. 1188-1196, (2020).
  2. S. H. Yang, "The influence of judo masters' pre-season winter hard-training on fatigue substance, muscle injury marker and inflammation markers", Exercise science, Vol.24, No.1 pp. 39-47, (2015).
  3. M. Flockhart, L. C. Nilsson, S. Tais, B. Ekblom, W. Apro, F. J. Larsen, "Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers", Cell Metabolism, Vol.33, No.5 pp. 957-970, (2021).
  4. B. G. Yoon, "The Review of Metabolic Acidosis During Exercise", Journal of the Korean Oil Chemists Society, Vol.35, No.4 pp. 1433-1441, (2018).
  5. M. Adeva-Andany, M. Lopez-Ojen, R. Funcasta-Calderon, E. Ameneiros-Rodriguez, C. Donapetry-Garcia, M. Vila-Altesor, J. Rodriguez-Seijas, "Comprehensive review on lactate metabolism in human health", Mitochondrion, Vol.17, pp. 76-100, (2014).
  6. A. Farhana, S. L. Lappin, "Biochemistry, lactate dehydrogenase", In StatPearls, StatPearls Publishing.
  7. S. K. Powers, R. Deminice, M. Ozdemir, T. Yoshihara, M. P. Bomkamp, H. Hyatt, "Exercise-induced oxidative stress: friend or foe?", Journal of Sport and Health Science, Vol.9, No.5 pp. 415-425, (2020).
  8. N. H. Nguyen, G. B. Tran, C. T. Nguyen, "Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases", Journal of Molecular Medicine, Vol.98, No.1 pp. 59-69, (2020).
  9. A. Ayala, M. F. Munoz, S. Arguelles, "Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal" Oxidative Medicine and Cellular Longevity, Vol.2014 pp. 1-31, (2014).
  10. A. Thirupathi, R. A. Pinho, U. C. Ugbolue, Y. He, Y. Meng, Y. Gu. "Effect of running exercise on oxidative stress biomarkers: A systematic review", Frontiers in Physiology, Vol.11 pp. 1789, (2021).
  11. J. Czuczejko, L. Sielski, B. Wozniak, A. Wozniak, K. Szewczyk-Golec, "Melatonin supplementation improves oxidative and inflammatory state in the blood of professional athletes during the preparatory period for competitions", Free Radical Research, Vol.53, No.2 pp. 198-209, (2019).
  12. P. Sutkowy, A. Wozniak, T. Boraczynski, M. Boraczynski, C. Mila-Kierzenkowska, "The oxidant-antioxidant equilibrium, activities of selected lysosomal enzymes and activity of acute phase protein in peripheral blood of 18-year-old football players after aerobic cycle ergometer test combined with ice-water immersion or recovery at room temperature", Cryobiology, Vol.74 pp. 126-131, (2017).
  13. T. A. F. Aguilar, B. C. H. Navarro, J. A. M. Perez, "Endogenous antioxidants: a review of their role in oxidative stress", A Master Regulator of Oxidative Stress-the Transcription Factor nrf2, pp. 3-20, (2016).
  14. J. E. Nogueira, P. Passaglia, C. M. Mota, B. M. Santos, M. E. Batalhao, E. C. Carnio, L. G. Branco, "Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status", Free Radical Biology and Medicine, Vol.129 pp. 186-193, (2018).
  15. A. Phaniendra, D. B. Jestadi, L. Periyasamy, "Free radicals: properties, sources, targets, and their implication in various diseases", Indian Journal of Clinical Biochemistry, Vol.30, No.1 pp. 11-26, (2015).
  16. J. I. Yu, Y. H. Cho, T. B. Seo, "Effect of Various Recovery Methods on Maximum Strength, Lactate Clearance Rate and Performance in Sports Climber", Korean society for Wellness, Vol.15, No.3 pp. 535-546, (2020).
  17. J. G. Kim, "Comparison of Physiological Responses Following to the Static Recovery Trial or Stretching in High-Intensity Weight Training", International Journal of Coaching Science, Vol.21, No.2 pp. 64-70, (2019).
  18. E. S. Han, M. Gu, "Effects of Static Stretching Cool-Down on Changes in Blood Lactate Accumulation Due to High Strength Short-term Exercise", The Korean Journal of Growth and Development, Vol.27, No.2 pp. 87-91, (2019).
  19. J. W. Kim, H. C. Cho, J. H. Kim, "The Effect of Aqua Legs Massage in Convalescence on Blood Fatigue Materials after the Maximum Exercise Test", The Korean Society of Sports Science, Vol.27, No.4 pp. 923-931, (2018).
  20. H. Y. Jang, M. H. Lee, "Effects of Using Convergence Sports Massage on ssireum players' Recovery Heart Rate, Oxygen Uptake and Blood Lactate after Maximal Exercise", Journal of the Korea Convergence Society, Vol.10, No.6 pp. 317-324, (2019).
  21. T. W. Kang, J. B. Park, "The Effect of Stretching in Cold Immersion after Artificial Delayed Onset of Muscle Soreness(DOMS) on Muscle Pain and Muscular Function for Life Care", Journal of Korea Entertainment Industry Association, Vol.12, No.8 pp. 317-326, (2018).
  22. K. H. Hong, G. W. Kim, J. I. Choi, B. K. Kim, T. S. Jang, "Effect of Water Temperature Differences on Blood Lactate, Double Product and Pain during Half-Bath after Circuit Weight Training", The Korean Journal of Sport, Vol.18, No.4 pp. 441-451, (2020).
  23. E. H. Park, Y. K. Yang, T. Y. Han, "Effects of Temperature Treatment on the Fatigue of the Central nervous system in Taekwondo Athletes", The Korean Society of Sports Science, Vol.27, No.5 pp. 1213-1223, (2018).
  24. J. Y. Kim, S. H. Kim, D. J. Sung, "Cold-water immersion for recovery in elite athletes: Effects, practical application, and impact on training adaptations", Korean Society for Wellness, Vol.12, No.4 pp. 575-588, (2017).
  25. M. K. Kim, "Effects of Blood Fatigue and Stress Hormone on Temperature of Whole-Bath after Resistance Exercise in Adult Women", The Korea Journal of Sports Science, Vol.26, No.4 pp. 995-1006, (2017).
  26. J. H. Kim, "The Study on Recovery of Muscular pain According to Cooling Treatment Method", Korean society for Wellness, Vol.13, No,4 pp. 401-409, (2018).
  27. P. Sutkowy, A. Wozniak, T. Boraczynski, C. Mila-Kierzenkowska, M. Boraczynski, "Postexercise impact of ice-cold water bath on the oxidant-antioxidant balance in healthy men", Biomed Research International, Vol.2015 pp. 1-8, (2015).
  28. L. Torres-Ronda, X. S. i del Alcazar, "The properties of water and their applications for training", Journal of Human Kinetics, Vol.44 pp. 237, (2014).
  29. Yeung, S. S., Ting, K. H., Hon, M., Fung, N. Y., Choi, M. M., Cheng, J. C., Yeung, E. W. Effects of cold water immersion on muscle oxygenation during repeated bouts of fatiguing exercise: a randomized controlled study. Medicine, Vol.95. No.1 pp. 1-8, (2016).
  30. M. M. Hall, S. Rajasekaran, T. W. Thomsen, A. R. Peterson, "Lactate: friend or foe." Physical Medicine and Rehabilitation, Vol.8, No.3 pp. S8-S15. (2016).
  31. S. Passarella, A. Schurr, "l-Lactate transport and metabolism in mitochondria of Hep G2 cells-The Cori cycle revisited." Frontiers in Oncology, Vol.8 pp. 120. (2018).
  32. D. Anderson, J. Nunn, C. J. Tyler, "Effect of cold (14 ℃) vs Ice (5 ℃) water immersion on recovery from intermittent running exercise." The Journal of Strength & Conditioning Research, Vol.32, No.3 pp. 764-771, (2018).
  33. P. Gu, L. Zhang, X. Zheng, X. A. Zhang, "Effects of post-exercise recovery methods on exercise-induced hormones and blood fatigue factors: a systematic review and meta-analysis." Ann Palliat Med, Vol.10, No.10 pp. 184-193, (2021).
  34. Y. K. Song, Justin Y. Jeon, S. H. Suh, "Understanding of Lactate." Korean Journal of Sport Science, Vol.28, No.1 pp. 1-10. (2017).
  35. C. G. Kim, "The Effects of Whole-Body Cold Water Immersion following Eccentric Exercise on Muscle Damage, Blood MDA and Lactate Levels." 한The Korean Society of Sports Science, Vol.30, No.1 pp. 813-822, (2021).
  36. J. H. Kim, S. M. Ha, M. S. Ha, Y. J. Choi, D. Y. Kim, "Comparative Analysis of Catecholamine, Cortisol, Reactive Oxygen Species and Lactate According to the Performing 2,000m Rowing Ergometer in Rowers." The Korean Society of Sports Science, Vol.28, No.1 pp. 1213-1224, (2019).
  37. J. Stanley, J. M. Peake, J. S. Coombes, M. Buchheit, "Central and peripheral adjustments during high-intensity exercise following cold water immersion." European Journal of Applied Physiology, Vol.114, No.1 pp. 147-163, (2014).
  38. M. Ihsan, G. Watson, C. R.Abbiss, "What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise?." Sports Medicine, Vol.46, No.8 pp. 1095-1109, (2016).
  39. D. Morales-Alamo, J. A. L. Calbet, "ree radicals and sprint exercise in humans." Free Radical Research, Vol.48, No.1 pp. 30-42, (2014)
  40. G. E. White, G. D. Wells, "Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise." Extreme Physiology & Medicine, Vol.2, No.1 pp. 1-11, (2013).
  41. A. F. Machado, P. H. Ferreira, J. K. Micheletti, A. C. de Almeida, I. R. Lemes, F. M. Vanderlei, J. N. Junior, C. M. Pastre, "Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis." Sports Medicine, Vol.46, No.4 pp. 503-514, (2016).
  42. J. R. Hoffman, J. Im, J. Kang, C. M. Maresh, W. J. Kraemer, D. French, S. Nioka, R. Kime, K. W. Rundell, N. A. Ratamess, A. D. Faigenbaum, B. Chance, "Comparison of low-and high-intensity resistance exercise on lipid peroxidation: role of muscle oxygenation." The Journal of Strength & Conditioning Research, Vol.21, No.1 pp. 118-122, (2007).
  43. M. J. Tipton, N. Collier, H. Massey, J. Corbett, M. Harper, M. "Cold water immersion: kill or cure?." Experimental Physiology, Vol.102, No.11 pp. 1335-1355, (2017).
  44. M. Rinnerthaler, J. Bischof, M. K. Streubel, A. Trost, K. Richter, "Oxidative stress in aging human skin." Biomolecules, Vol.5, No.2 pp. 545-589, (2015).
  45. S. K. Powers, K. J. Sollanek, M. P. Wiggs, H. A. Demirel, A. J. Smuder, "Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection." Free Radical Research, Vol.48, No.1 pp. 43-51, (2014).
  46. T. M. Coelho, R. F. Nunes, F. Y. Nakamura, R. Duffield, M. C. Serpa, J. F. da Silva, L. J. Carminatt, F. J. CidralFilho, M. P. Goldim, K. Mathias, F. Petronilho, D. F. Martins, L. G. Guglielmo, "Post-Match Recovery in Soccer with Far-Infrared Emitting Ceramic Material or Cold-Water Immersion", Journal of Sports Science & Medicine, Vol.20, No.4 p. 732, (2021).
  47. E. H. Park, S. W. Choi, Y. K. Yang, "Cold-Water Immersion Promotes Antioxidant Enzyme Activation in Elite Taekwondo Athletes", Applied Sciences, Vol.11, No.6 p. 2855, (2021).
  48. S. Dede, Y. Deger, I. Meral, "Effect of short-term hypothermia on lipid peroxidation and antioxidant enzyme activity in rats", Journal of Veterinary Medicine Series A, Vol.49, No.6 pp. 286-288, (2002).