DOI QR코드

DOI QR Code

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang (School of Architecture, Chonnam National University) ;
  • Dae-Kun Kwon (NatHaz Modeling Laboratory, University of Notre Dame) ;
  • Jungtae Noh (Department of Architectural Engineering, Dankook University) ;
  • Ahsan Kareem (NatHaz Modeling Laboratory, University of Notre Dame)
  • 투고 : 2022.09.05
  • 심사 : 2023.04.02
  • 발행 : 2023.04.25

초록

The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

키워드

과제정보

This research was supported by a grant from the Technology Advancement Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government (grant 21CTAP-C164107-01). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2020R1F1A1070349) and by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (2021H1D3A2A0203968712) and in part the Robert M Moran Professorship endowment, University of Notre Dame.

참고문헌

  1. Al-Hussein, A. and Haldar, A. (2015), "Novel unscented Kalman filter for health assessment of structural systems with unknown input", J. Eng. Mech., ASCE, 141(7), 04015012. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000926. 
  2. Al-Hussein, A. and Haldar, A. (2016), "Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems", Struct. Control Health Monitor., 23(1), 156-175. https://doi.org/10.1002/stc.1764. 
  3. American Society of Civil Engineers (ASCE) (2016), "Minimum design loads for buildings and other structures", ASCE 7-16, Reston, VA. https://doi.org/10.1061/9780784412916. 
  4. Architectural Institute of Japan (AIJ) (2004), "RLB recommendations for loads on buildings", Structural Standards Committee, Architectural Institute of Japan, Tokyo, Japan. 
  5. ASCE/SEI 49-21 (2022), "Wind tunnel testing for buildings and other structures", American Soc. Civil Eng. Struct. Eng. Inst., (ASCE/SEI), https://doi.org/10.1061/9780784415740. 
  6. Au, S.K. (2012), "Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value", Mech. Syst. Signal Process., 26, 60-75. https://doi.org/10.1016/j.ymssp.2011.06.017. 
  7. Bashor, R. and Kareem, A. (2009), "Probabilistic assessment of occupant comfort in tall buildings", Structures Congress 2009, https://doi.org/10.1061/41031(341)66. 
  8. Candy, J.V. (1992), "Bayesian signal processing: classical, modern, and particle filtering methods", Wiley. 
  9. Chang, B., Sarkar, P. and Phares, B. (2010), "Time-domain model for predicting aerodynamic loads on a slender support structure for fatigue design", J. Eng. Mech., ASCE, 136(6), 736-746. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000122. 
  10. Chatzi, E.N. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Health Monitor., 16, 99-123. https://doi.org/10.1002/stc.290. 
  11. Chatzis, M.N., Chatzi, E.N. and Smyth, A.W. (2015), "An experimental validation of time domain system identification methods with fusion of heterogeneous data", Earthq. Eng. Struct. Dynam., 44, 523-547. https://doi.org/10.1002/eqe.2528. 
  12. Chen, X. and Huang, G. (2010), "Estimation of probabilistic extreme wind load effects: Combination of aerodynamic and wind climate data", J. Eng. Mech., 136(6), https://doi.org/10.1061/(ASCE)EM.1943-7889.0000118. 
  13. Chen, X. (2013), "Estimation of stochastic crosswind response of wind-excited tall buildings with nonlinear aerodynamic damping", Eng. Struct., 56, 766-778. https://doi.org/10.1016/j.engstruct.2013.05.044. 
  14. Chen, X., Kwon, D. and Kareem, A. (2014), "High frequency force balance technique for tall buildings: a critical review and some new insights", Wind Struct., 18(4), 391-422. https://doi.org/10.12989/was.2014.18.4.391. 
  15. Cheng, C.M., Lu, P.C. and Tsai, M.S. (2002), "Acrosswind aerodynamic damping of isolated square-shaped buildings", J. Wind Eng. Ind. Aerod., 90(12-15), 1743-1756. https://doi.org/10.1016/S0167-6105(02)00284-2. 
  16. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Division, ASCE, 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692. 
  17. Ding, F., Kareem, A. and Wan, J. (2019), "Aerodynamic tailoring of structures using computational fluid dynamics", Struct. Eng. Int., 29(1), 26-39. https://doi.org/10.1080/10168664.2018.1522936. 
  18. Ehsan, F. and Scanlan, R.H. (1990), "Vortex-induced vibrations of flexible bridges", J. Eng. Mech., ASCE, 116(6), 1392-1411. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:6(1392). 
  19. Ghorbani, E., Buyukozturk, O. and Cha, Y.J. (2020), "Hybrid output-only structural system identification using random decrement and Kalman filter", Mech. Syst. Signal Process., 144, 106977. https://doi.org/10.1016/j.ymssp.2020.106977. 
  20. Gillijns, S. and De Moor, B. (2007), "Unbiased minimum-variance input and state estimation for linear discrete-time systems", Automatic, 43, 111-116. https://doi.org/10.1016/j.automatica.2006.08.002. 
  21. Goswami, I., Scanlan, R.H. and Jones, N.P. (1993), "Vortex-induced vibration of circular cylinders", J. Eng. Mech., ASCE, 119(11), 2288-2302. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2270). 
  22. Guo, K., Yang, Q. and Tamura, Y. (2020), "Crosswind response analysis of structures with generalized Van der Pol-type aerodynamic damping by equivalent nonlinear equation method", J. Wind Eng. Ind. Aerod., 221, 104887. https://doi.org/10.1016/j.jweia.2021.104887. 
  23. Hansen, S.O. (2007), Vortex-induced vibrations of structures, Struct. Eng. World Congress, Nov. 2-7, Bangalore, India. 
  24. Hao, W., Chen, X. and Yang, Q. (2020), "Extraction of nonlinear aerodynamic damping of crosswind-excited tall buildings from aeroelastic model tests", J. Eng. Mech., ASCE, 146(3), 04020006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001731. 
  25. Hartlen, R.T. and Currie, I.G. (1970), "A lift-oscillator model of vortex-induced vibration", J. Engineering Mechanics Division, ASCE, 96(5), 57-591. https://doi.org/10.1061/JMCEA3.0001276. 
  26. Hayashida, H., Mataki, Y. and Iwasa, Y. (1992), "Aerodynamic damping effects of tall building for a vortex induced vibration", J. Wind Eng. Ind. Aerodyn., 43(1-3), 1973-1983. https://doi.org/10.1016/0167-6105(92)90621-G. 
  27. Holmes, J.D. (2015), "Wind loading of structures", Thrid Edition, CRC Press, Taylor & Francis Group, LLC. https://doi.org/10.1201/b18029. 
  28. Hwang, J.S., Kareem, A. and Kim, W. (2009), "Estimation of modal loads using structural response", J. Sound Vib., 326(3-5), 522-539. https://doi.org/10.1016/j.jsv.2009.05.003. 
  29. Hwang, J.S., Kwon, D.K. and Kareem, A. (2018), "Estimation of structural modal parameters under winds using a virtual dynamic shaker", J. Eng. Mech., ASCE, 144(4), 1-14. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001423. 
  30. Jones, N.J., Shi, T., Ellis, J.H. and Scanlan, R.H. (1995), "System-identification procedure for system and input parameters in ambient vibration surveys", J. Wind Eng. Ind. Aerodyn., 54-55, 91-99. https://doi.org/10.1016/0167-6105(94)00033-A. 
  31. Julier, S.J. and Uhlmann, J. (1997), "A new extension of the Kalman filter to nonlinear systems", Proc. SPIE, 3068, 182-193. https://doi.org/10.1117/12.280797. 
  32. Julier, S.J. (2002), "The scaled unscented transformation", Proc. of the American Control Conference, 6, 4555-4559. https://doi.org/10.1109/ACC.2002.1025369. 
  33. Kareem, A. (1981), "Wind-excited response of buildings in higher modes", J. Struct. Division, ASCE, 107(4), 701-706. https://doi.org/10.1061/JSDEAG.0005682 
  34. Kareem, A. (1982), "Acrosswind response of buildings", Journal of the Structural Division, ASCE, 108(4), 869-887. https://doi.org/10.1061/JSDEAG.0005930. 
  35. Kareem, A. (1984), "Model for predicting of the acrosswind response of buildings", Eng. Struct., 6(2), 136-141. https://doi.org/10.1016/0141-0296(84)90006-3. 
  36. KBC (2005), "Korea Building Code", Architectural Institute of Korea, 2005. 
  37. Kwon, D.K. and Kareem, A. (2013), "Comparative study of major international wind codes and standards for wind effects on tall buildings", Eng. Struct., 51, 23-35. https://doi.org/10.1016/j.engstruct.2013.01.008. 
  38. Kwon, D.K., Kareem, A., Stansel, R. and Ellingwood, B.R. (2015), "Wind load factors for dynamically sensitive structures with uncertainties", Eng. Struct., 103(15), 53-62. https://doi.org/10.1016/j.engstruct.2015.08.031. 
  39. Lam, H.F., Zhang, F.L., Ni, Y.C. and Hu, J. (2017), "Operational modal identification of a boat-shaped building by a Bayesian approach", Eng. Struct., 138, 381-393. https://doi.org/10.1016/j.engstruct.2017.02.003. 
  40. Larsen, A. (1995), "A generalized model for assessment of vortex-induced vibrations of flexible structures", J. Wind Eng. Ind. Aerodyn., 57, 281-294. https://doi.org/10.1016/0167-6105(95)00008-F. 
  41. Landl, R. (1975), "A mathematical model for vortex-excited vibrations of bluff bodies", J. Sound Vib., 42, 219-234. https://doi.org/10.1016/0022-460X(75)90217-5. 
  42. Mansouri, M., Avci, O., Nounou, H. and Nounou, M. (2015), "Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system", J. Civil Struct. Health Monitor., 5, 493-508. https://doi.org/10.1007/s13349-015-0134-7. 
  43. Marukawa, H., Kato, N., Gujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Ind. Aerodyn., 59, 177-190. https://doi.org/10.1016/0167-6105(96)00006-2. 
  44. Murakami (1992), "Computational wind engineering I", Proceedings of the 1st International Symposium on Comput. Wind Eng. (CWE 92), Tokyo, Japan, August 21-23. https://doi.org/10.1016/0167-6105(90)90335-A. 
  45. Muralidharan, K., Muddada, S. and Patnaik, B.S.V. (2013), "Numerical simulation of vortex induced vibrations and its control by suction and blowing", Appl. Math. Model., 37, 284-307. https://doi.org/10.1016/j.apm.2012.02.028. 
  46. Nakamura, Y. (1993), "Bluff body aerodynamics and turbulence", J. Wind Eng. Ind. Aerodyn., 49, 65-78. https://doi.org/10.1016/0167-6105(93)90006-A. 
  47. Ni, Y.C., and Zhang, F.L. (2021), "Uncertainty quantification in fast Bayesian modal identification using forced vibration data considering the ambient effect", Mech. Syst. Signal Process., 148, 1-25. https://doi.org/10.1016/j.ymssp.2020.107078. 
  48. Pagnini, L.C., Piccardo, G. and Solari, G. (2020), "VIV regimes and simplified solutions by the spectral model description", J. Wind Eng. Ind. Aerodyn., 198, 104100. https://doi.org/10.1016/j.jweia.2020.104100. 
  49. Quan, Y., Gu, M., Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. https://doi.org/10.12989/was.2005.8.5.309. 
  50. Sanchez, J. and Benaroya, H. (2014), "Review of force reconstruction techniques", J. Sound Vib., 333, 2999-3018. https://doi.org/10.1016/j.jsv.2014.02.025. 
  51. Simiu, E. and Scanlan, R.H. (1996), "Wind effects on structures: fundamentals and applications to design", 3rd edition, Wiley-Interscience.
  52. Simiu, E., Gabbai, R. and Fritz, W.P. (2008), "Wind-induced tall building response: a time-domain approach", Wind Struct., 11(6), 427-440. https://doi.org/10.12989/was.2008.11.6.427. 
  53. Tamura, Y. and Kareem, A. (2013), "Advanced structural wind engineering", Springer. https://doi.org/10.1007/978-4-431-54337-4. 
  54. Tamura, Y. and Van Phuc, P. (2015), "Development of CFD and applications: Monologue by a non-CFD-expert", J. Wind Eng. Ind. Aerodyn., 144, 3-13. https://doi.org/10.1016/j.jweia.2015.05.003. 
  55. Van Der Merwe, R. and Wan, E.A. (2001), "The square-rot unscented Kalman filter for state and parameter-estimation", Proc. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP01), 6. 3461-3464. https://doi.org/10.1109/ICASSP.2001.940586. 
  56. Vickery, B.J. and Basu, R.I. (1983), "Across-wind vibrations of structures with circular cross-section, Part I: Development of a mathematical model for full-scale application", J. Wind Eng. Ind. Aerodyn., 12, 75-97. https://doi.org/10.1016/0167-6105(83)90080-6. 
  57. Wang, L., Fan, X., Liang, S., Song, J. and Wang, Z. (2018), "Improved expression for across-wind aerodynamic damping ratios of super high-rise building", J. Wind Eng. Ind. Aerodyn., 176, 263-272. https://doi.org/10.1016/j.jweia.2018.04.001. 
  58. Watanabe, Y., Isyumov, N. and Davenport, A.G. (1997), "Empirical aerodynamic damping function for tall buildings", J. Wind Eng. Ind. Aerodyn., 72(1-3), 313-321. https://doi.org/10.1016/S0167-6105(97)00260-2. 
  59. Wu, M. and Smyth, A.W. (2007), "Application of the unscented Kalman filter for real-time nonlinear structural system identification", Struct. Control Health Monit., 14, 971-990. https://doi.org/10.1002/stc.186. 
  60. Wu, P., Li, X. and Bo, Y. (2013), "Iterated square root unscented Kalman filter for maneuvering target tracking using TDOA measurements", Int. J. Control. Autom. Syst., 11(4), 761-767. https://doi.org/10.1007/s12555-012-0339-z. 
  61. Wu, Y. and Chen, X. (2020), "Identification of nonlinear aerodynamic damping from stochastic crosswind response of tall buildings using unscented Kalman filter technique", Eng. Struct., 220, 110791. https://doi.org/10.1016/j.engstruct.2020.110791. 
  62. Wu, Y., Chen, X. and Wang, Y. (2021), "Identification of linear and nonlinear flutter derivatives of bridge decks by unscented Kalman filter approach from free vibration or stochastic buffeting response", J. Wind Eng. Ind. Aerod., 214, 104650. https://doi.org/10.1016/j.jweia.2021.104650. 
  63. Wu, T. and Kareem, A. (2013), "Vortex-induced vibration of bridge decks: Volterra series-based model", J. Eng. Mech., ASCE, 139(12), 1831-1843. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000628. 
  64. Yoshikawa, M. and Tamura, T. (2015), "CFD wind-resistant design of tall building in actual urban area using unstructured-grid LES", IABSE Symposium Report, 104(2), 1-8. https://doi.org/10.2749/222137815815775952. 
  65. Yu, D., Butler, K., Kareem, A., Glimm, J. and Sun, J. (2013), "Simulation of the influence of aspect ratio on the aerodynamics of rectangular prisms", J. Eng. Mech., ASCE, 139(4), 429-438. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000494. 
  66. Zhan, R. and Wan, J. (2007), "Iterated unscented Kalman filter for passive target tracking", IEEE Trans Aerosp. Electron. Syst., 43(3), 1155-1163. https://doi.org/10.1109/TAES.2007.4383605. 
  67. Zhang, M., Xu, F. and Oiseth, O. (2020), "Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: comparison of modeling schemes", J. Wind Eng. Ind. Aerodyn., 205, 104321. https://doi.org/10.1016/j.jweia.2020.104321. 
  68. Zhou, Y. and Kareem, A. (2003), "Aeroelastic balance", J. Eng. Mech., ASCE, 129(3), 283-292. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(283).