DOI QR코드

DOI QR Code

Mitochondria in reproduction

  • 투고 : 2022.09.11
  • 심사 : 2022.12.06
  • 발행 : 2023.03.31

초록

In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.

키워드

참고문헌

  1. Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet 2021;38:993-1002. https://doi.org/10.1007/s10815-021-02196-z
  2. Annalisa R, Dominic S, Nikolaos PP. Editorial: diminished ovarian reserve and poor ovarian response: diagnostic and therapeutic management. Front Physiol 2022;13:827678.
  3. Wood C, Calderon I, Crombie A. Age and fertility: results of assisted reproductive technology in women over 40 years. J Assist Reprod Genet 1992;9:482-4. https://doi.org/10.1007/BF01204055
  4. Reijnders L. The origin of mitochondria. J Mol Evol 1975;5:167-76. https://doi.org/10.1007/BF01741239
  5. Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022;47:645-59. https://doi.org/10.1016/j.tibs.2022.03.008
  6. Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 2007;77:21-49. https://doi.org/10.1016/S0070-2153(06)77002-8
  7. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014;94:909-50. https://doi.org/10.1152/physrev.00026.2013
  8. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol 2001;2:REVIEWS1018.
  9. Martin W, Mentel M. The origin of mitochondria. Nat Educ 2010;3:58.
  10. Roger AJ, Munoz-Gomez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017;27:R1177-192. https://doi.org/10.1016/j.cub.2017.09.015
  11. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018;20:745-54. https://doi.org/10.1038/s41556-018-0124-1
  12. Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. Biochim Biophys Acta Gene Regul Mech 2019;1862:429-46. https://doi.org/10.1016/j.bbagrm.2018.11.005
  13. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab 2015;22:204-6. https://doi.org/10.1016/j.cmet.2015.05.013
  14. Premsler T, Zahedi RP, Lewandrowski U, Sickmann A. Recent advances in yeast organelle and membrane proteomics. Proteomics 2009;9:4731-43. https://doi.org/10.1002/pmic.200900201
  15. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 2016;85:133-60. https://doi.org/10.1146/annurev-biochem-060815-014402
  16. Lee C, Kim KH, Cohen P. MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 2016;100:182-7. https://doi.org/10.1016/j.freeradbiomed.2016.05.015
  17. Pozzan T, Rizzuto R. The renaissance of mitochondrial calcium transport. Eur J Biochem 2000;267:5269-73. https://doi.org/10.1046/j.1432-1327.2000.01567.x
  18. Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018;19:713-30. https://doi.org/10.1038/s41580-018-0052-8
  19. Aiken CE, Cindrova-Davies T, Johnson MH. Variations in mouse mitochondrial DNA copy number from fertilization to birth are associated with oxidative stress. Reprod Biomed Online 2008;17:806-13. https://doi.org/10.1016/S1472-6483(10)60409-9
  20. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007;39:386-90. https://doi.org/10.1038/ng1970
  21. Cree L, Loi P. Mitochondrial replacement: from basic research to assisted reproductive technology portfolio tool-technicalities and possible risks. Mol Hum Reprod 2015;21:3-10. https://doi.org/10.1093/molehr/gau082
  22. Floros VI, Pyle A, Dietmann S, Wei W, Tang WC, Irie N, et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol 2018;20:144-51. https://doi.org/10.1038/s41556-017-0017-8
  23. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 2008;40:249-54. https://doi.org/10.1038/ng.2007.63
  24. Wolff JN, White DJ, Woodhams M, White HE, Gemmell NJ. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS One 2011;6:e20522.
  25. Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem 2018;62:225-34. https://doi.org/10.1042/EBC20170096
  26. Freyer C, Cree LM, Mourier A, Stewart JB, Koolmeister C, Milenkovic D, et al. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat Genet 2012;44:1282-5. https://doi.org/10.1038/ng.2427
  27. Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev 2020;63:101168.
  28. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers 2016;2:16080.
  29. Ham PB, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2017;157:92-116. https://doi.org/10.1016/j.pneurobio.2016.06.006
  30. Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging. Reproduction 2021;162:R19-33. https://doi.org/10.1530/REP-21-0022
  31. Zhang W, Liu Y, An Z, Huang D, Qi Y, Zhang Y. Mediating effect of ROS on mtDNA damage and low ATP content induced by arsenic trioxide in mouse oocytes. Toxicol In Vitro 2011;25:979-84. https://doi.org/10.1016/j.tiv.2011.03.009
  32. May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferre-L'Hotellier V, Moriniere C, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016;22:725-43. https://doi.org/10.1093/humupd/dmw028
  33. Kirillova A, Smitz JE, Sukhikh GT, Mazunin I. The role of mitochondria in oocyte maturation. Cells 2021;10:2484.
  34. Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 2012;1819:921-9. https://doi.org/10.1016/j.bbagrm.2012.03.002
  35. Chimienti G, Picca A, Fracasso F, Marzetti E, Calvani R, Leeuwenburgh C, et al. Differences in liver TFAM binding to mtDNA and mtDNA damage between aged and extremely aged rats. Int J Mol Sci 2019;20:2601.
  36. May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 2005;20:593-7. https://doi.org/10.1093/humrep/deh667
  37. Konstantinidis M, Alfarawati S, Hurd D, Paolucci M, Shovelton J, Fragouli E, et al. Simultaneous assessment of aneuploidy, polymorphisms, and mitochondrial DNA content in human polar bodies and embryos with the use of a novel microarray platform. Fertil Steril 2014;102:1385-92. https://doi.org/10.1016/j.fertnstert.2014.07.1233
  38. Santos JH, Meyer JN, Mandavilli BS, Van Houten B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 2006;314:183-99. https://doi.org/10.1385/1-59259-973-7:183
  39. Kitagawa T, Suganuma N, Nawa A, Kikkawa F, Tanaka M, Ozawa T, et al. Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod 1993;49:730-6. https://doi.org/10.1095/biolreprod49.4.730
  40. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 1995;64:577-83. https://doi.org/10.1016/S0015-0282(16)57796-6
  41. Chiaratti MR, Garcia BM, Carvalho KF, Macabelli CH, Ribeiro FK, Zangirolamo AF, et al. Oocyte mitochondria: role on fertility and disease transmission. Anim Reprod 2018;15:231-8. https://doi.org/10.21451/1984-3143-AR2018-0069
  42. Zhang H, Panula S, Petropoulos S, Edsgard D, Busayavalasa K, Liu L, et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med 2015;21:1116-8. https://doi.org/10.1038/nm.3775
  43. Sharma H, Singh D, Mahant A, Sohal SK, Kesavan AK. Development of mitochondrial replacement therapy: a review. Heliyon 2020;6:e04643.
  44. Leese HJ, Conaghan J, Martin KL, Hardy K. Early human embryo metabolism. Bioessays 1993;15:259-64. https://doi.org/10.1002/bies.950150406
  45. Sun QY, Schatten H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 2006;131:193-205. https://doi.org/10.1530/rep.1.00847
  46. Yu Y, Dumollard R, Rossbach A, Lai FA, Swann K. Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J Cell Physiol 2010;224:672-80. https://doi.org/10.1002/jcp.22171
  47. Takahashi Y, Hashimoto S, Yamochi T, Goto H, Yamanaka M, Amo A, et al. Dynamic changes in mitochondrial distribution in human oocytes during meiotic maturation. J Assist Reprod Genet 2016;33:929-38. https://doi.org/10.1007/s10815-016-0716-2
  48. Lawrence EJ, Boucher E, Mandato CA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 2016;11:3.
  49. Kim MJ, Choi KH, Seo DW, Lee HR, Kong HS, Lee CH, et al. Association between functional activity of mitochondria and actin cytoskeleton instability in oocytes from advanced age mice. Reprod Sci 2020;27:1037-46. https://doi.org/10.1007/s43032-020-00145-2
  50. Huang Y, Hu C, Ye H, Luo R, Fu X, Li X, et al. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency. J Immunol Res 2019;2019:8069898.
  51. Nie X, Dai Y, Zheng Y, Bao D, Chen Q, Yin Y, et al. Establishment of a mouse model of premature ovarian failure using consecutive superovulation. Cell Physiol Biochem 2018;51:2341-58. https://doi.org/10.1159/000495895
  52. Wu M, Ma L, Xue L, Ye W, Lu Z, Li X, et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice. Aging (Albany NY) 2019;11:1030-44. https://doi.org/10.18632/aging.101808
  53. Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, et al. Necroptosis in stressed ovary. J Biomed Sci 2019;26:11.
  54. Colella M, Cuomo D, Peluso T, Falanga I, Mallardo M, De Felice M, et al. Ovarian aging: role of pituitary-ovarian axis hormones and ncRNAs in regulating ovarian mitochondrial activity. Front Endocrinol (Lausanne) 2021;12:791071.
  55. Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, et al. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol 2021;11:617843.
  56. Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, et al. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 2019;11:817-32. https://doi.org/10.18632/aging.101784
  57. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018;15:199.
  58. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O'Reilly L, et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 2012;36:215-27. https://doi.org/10.1016/j.immuni.2012.01.012
  59. Antonopoulos C, El Sanadi C, Kaiser WJ, Mocarski ES, Dubyak GR. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. J Immunol 2013;191:4789-803. https://doi.org/10.4049/jimmunol.1300645
  60. Moriwaki K, Bertin J, Gough PJ, Chan FK. A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J Immunol 2015;194:1938-44. https://doi.org/10.4049/jimmunol.1402167
  61. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 2015;6:6282.
  62. Wu W, Liu P, Li J. Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2012;82:249-58. https://doi.org/10.1016/j.critrevonc.2011.08.004
  63. Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta 2012;1822:1896-912. https://doi.org/10.1016/j.bbadis.2012.05.013
  64. Coutandin D, Osterburg C, Srivastav RK, Sumyk M, Kehrloesser S, Gebel J, et al. Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level. Elife 2016;5:e13909.
  65. Mobarak H, Heidarpour M, Tsai PJ, Rezabakhsh A, Rahbarghazi R, Nouri M, et al. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci 2019;9:95.
  66. Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update 2017;23:501-19. https://doi.org/10.1093/humupd/dmx018
  67. Yabuuchi A, Beyhan Z, Kagawa N, Mori C, Ezoe K, Kato K, et al. Prevention of mitochondrial disease inheritance by assisted reproductive technologies: prospects and challenges. Biochim Biophys Acta 2012;1820:637-42. https://doi.org/10.1016/j.bbagen.2011.10.014
  68. Farnezi HC, Goulart AC, Santos AD, Ramos MG, Penna ML. Three-parent babies: mitochondrial replacement therapies. JBRA Assist Reprod 2020;24:189-96. https://doi.org/10.5935/1518-0557.20190086
  69. Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 1997;350:186-7. https://doi.org/10.1016/S0140-6736(05)62353-7
  70. Dale B, Wilding M, Botta G, Rasile M, Marino M, Di Matteo L, et al. Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility: case report. Hum Reprod 2001;16:1469-72. https://doi.org/10.1093/humrep/16.7.1469
  71. Brenner CA, Barritt JA, Willadsen S, Cohen J. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril 2000;74:573-8. https://doi.org/10.1016/S0015-0282(00)00681-6
  72. Reznichenko AS, Huyser C, Pepper MS. Mitochondrial transfer: implications for assisted reproductive technologies. Appl Transl Genom 2016;11:40-7. https://doi.org/10.1016/j.atg.2016.10.001
  73. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010;465:82-5. https://doi.org/10.1038/nature08958
  74. Zhang J, Zhuang G, Zeng Y, Grifo J, Acosta C, Shu Y, et al. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online 2016;33:529-33. https://doi.org/10.1016/j.rbmo.2016.07.008
  75. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 2016;534:383-6. https://doi.org/10.1038/nature18303
  76. Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, et al. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022;15:100.
  77. Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci 2020;21:1135.
  78. Abdollahifar MA, Azad N, Sajadi E, Shams Mofarahe Z, Zare F, Moradi A, et al. Vitamin C restores ovarian follicular reservation in a mouse model of aging. Anat Cell Biol 2019;52:196-203. https://doi.org/10.5115/acb.2019.52.2.196
  79. Bentov Y, Casper RF. The aging oocyte: can mitochondrial function be improved? Fertil Steril 2013;99:18-22. https://doi.org/10.1016/j.fertnstert.2012.11.031
  80. Hardy ML, Day ML, Morris MB. Redox regulation and oxidative stress in mammalian oocytes and embryos developed in vivo and in vitro. Int J Environ Res Public Health 2021;18:11374.
  81. Warzych E, Lipinska P. Energy metabolism of follicular environment during oocyte growth and maturation. J Reprod Dev 2020;66:1-7. https://doi.org/10.1262/jrd.2019-102
  82. Takeuchi T, Neri QV, Katagiri Y, Rosenwaks Z, Palermo GD. Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol Reprod 2005;72:584-92. https://doi.org/10.1095/biolreprod.104.032391
  83. Ozturk S. Selection of competent oocytes by morphological criteria for assisted reproductive technologies. Mol Reprod Dev 2020;87:1021-36. https://doi.org/10.1002/mrd.23420
  84. Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat Res Rev Mutat Res 2020;785:108320.