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Propolis is a sticky natural product produced by honeybees. Research studies have discussed the effectiveness of propolis, directly or indirect-
ly, for ameliorating reproductive toxicity in males; however, this research has not yet been reviewed. The current paper presents an integra-
tive summary of all research studies in Scopus and PubMed that investigated the effects of propolis on semen quality, and hence on male 
fertility, in conditions of reproductive toxicity. The consensus indicates that propolis ameliorates reproductive toxicity and enhances semen 
quality in vivo in test animals. These effects may be attributable to the ability of propolis to reduce testicular oxidative damage, enhance tes-
ticular antioxidant defense mechanisms, increase nitric oxide production, reduce testicular apoptotic injury, and boost testosterone produc-
tion. However, to generalize these effects in humans would require further research. 
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Introduction 

Propolis, also called bee glue, is a resinous dark-brown mixture 
produced by honeybees, generally by mixing beeswax and bee sali-
va with exudates collected from sap flows, tree buds, or other botan-
ic sources [1,2]. Since 1945, particularly in the Scopus database, ap-
proximately 7000 published research articles on the impact of prop-
olis on human health have been published, forming a scientific con-
sensus that propolis has potential pharmacological properties. The 
number of publications on the health effects of propolis has in-
creased dramatically in the last decade. As a result, propolis has been 
recognized as having antioxidant [3-6], anticancer [7-10], anti-in-
flammatory [11-13], and antimicrobial and antiviral activities 
[4,5,14,15]. It has also been recognized as an effective natural prod-

uct in various diseases and disorders such as cardiovascular diseases 
[16,17], skin injury and skin care [18,19], diabetes [20-22], neuronal 
degenerative diseases [23-25], and hypertension [26-28]. 

Amid the recent increase in research on the ability of propolis to 
ameliorate specific diseases studies have also investigated the effec-
tiveness of propolis in counteracting reproductive toxicity in males. 
To date, the PubMed database contains 26 articles that associate 
propolis and male reproductive toxicity. The current paper reviews 
these studies and presents an integrative summary of this specific 
research context. To achieve this collective summary, we gathered 
studies from Scopus and PubMed that are published in English and 
that investigate the effects of propolis on male reproductive toxicity. 
To extract all related studies, we used the keywords “propolis” in 
combination with “sperm” and “semen.” In addition, to incorporate 
an explanatory summary of how propolis may function in conditions 
of reproductive toxicity, relevant mechanistic studies were discussed 
and reviewed.  

Effect of propolis on semen quality in induced 
reproductive toxicity conditions 

Table 1 shows the direct research studies that investigate and dis-
cuss the ameliorative effect of propolis against various reproductive 



Table 1. Direct research studies on propolis and its reported effects on semen quality parameters in different conditions of reproductive 
toxicity induced in males 

Study origin (year) Study population Toxicant (dose) Propolis dose Duration Effects on semen quality Reference
Turkey (2021) Male Sprague-Dawley 

rats
Cisplatin (3 mg/kg) 100 mg/kg 21 days (+) Sperm motility [29]

Malaysia (2020) Male Sprague-Dawley 
rats

Streptozotocin (60 mg/kg) 300 mg/kg 28 days (+) Motility [30]
(+) Normal forms of 

sperm
(+) Sperm count
(+) Vitality
(–) Sperm DNA damage

Egypt (2020) Adult male 
Sprague-Dawley rats

Paclitaxel (5 mg/kg) 50 mg/kg 28 days (+) Motility [31]
(+) Count
(+) Viability
(–) Sperm abnormality
(–) Sperm DNA damage

India (2017) Male mice Mitomycin C (2, 4, and 8 
mg/kg body weight)

400 mg/kg 35 days (+/–) Sperm Motility [32]
(+/–) Sperm morphology
(+/–) Sperm count
(–) Sperm DNA damage

Egypt (2010) Male New Zealand 
white rabbits

Triphenyltin (0.5 mg/kg 
body weight)

50 mg/kg Daily for 84 days (+) Sperm [33]
(+) Concentration
(+) Sperm motility
(+) Normal forms of 

sperm
Egypt (2009) Male rats Aluminum chloride (34 

mg/kg body weight)
50 mg/kg Daily for 70 days (+) Sperm concentration [34]

(+) Sperm motility
(+) Vitality
(+) Normal forms of 

sperm
Turkey (2016) Male albino rats Cadmium (1 mg/kg/day) 50 mg/kg 17 days NA [35]
Turkey (2020) Male Sprague-Dawley 

rats
Copper (128 mg/kg) 100 mg/kg 21 days (+) Sperm motility [36]

(+) Sperm concentration
(–) Abnormal sperm

Egypt (2014) Male Wistar albino rats Doxorubicin (6 doses at 18 
mg kg)

200 mg/kg (5 day/wk) 21 days (+) Sperm count [37]

Italy (2006) Human ejaculated 
sperm

Benzo[a]pyrene (500 µM) 6, 12, and 25 µg/mL 1 hour (–) Sperm DNA damage [38]

toxicants in males [29-38]. These studies were conducted in the last 
two decades, during which attention toward natural medicine has 
dramatically increased worldwide [39], and the majority were per-
formed in the Middle East (Egypt and Turkey). One reason for this 
trend may be that many cohorts in the Middle East are relying on 
natural remedies [40,41]. 

Almost all included studies that discussed the ameliorative effect 
of propolis against reproductive toxicants were conducted on ani-
mals. The one exception, an in vitro study, was conducted on ejacu-
lated human semen (Table 1). Half of the reproductive toxicants in 
these studies were chosen to be anticancer agents (cisplatin, pacli-
taxel, mitomycin C, doxorubicin, and streptozotocin), three were tox-
ic metals (aluminum, cadmium, and copper); one was an anti-fungal 

agent (triphenyltin), and one was a cancerous agent (benzo[a]
pyrene). In in vivo system studies, the duration of exposure to these 
toxicants ranged from 17 to 84 days, while the propolis dose ranged 
from 200 mg/kg of body weight (BW), equivalent to approximately 
33.3 mg/kg of human BW, to 400 mg/kg of BW, equivalent to 66.7 
mg/kg of human BW [42]. 

Together, almost all included studies revealed protective effects 
against induced reproductive toxicity (Table 1). In the animals tested, 
propolis improved semen quality measures such as sperm motility 
(six studies), sperm quantity (six studies), and normal forms of sperm 
(four studies). Among the published studies, only one, conducted in 
India on male mice, revealed a blunted effect of propolis on semen 
quality measures against mitomycin C-induced reproductive toxicity. 
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Collectively, these studies form a consensus that propolis may en-
hance semen quality in vivo when specific reproductive toxicity con-
ditions are induced. However, such effects cannot be generalized to 
humans without further research. 

Mechanisms of action of propolis in ameliorating 
reproductive toxicity 

Gonadal hormones in males, especially testosterone and luteiniz-
ing hormone, are considered the primary indicators of sensitivity to 
exogenous reproductive toxicants. As a result, reducing induced re-
productive toxicity by supporting production of these hormones, 
particularly testosterone, is an important way to measure the bioac-
tivity of a given natural or synthetic substance, due to the hormones’ 
role in controlling spermatogenesis in males. Briefly, testosterone, 
which is a steroid hormone chemically derived from cholesterol, is 
produced in Leydig cells in response to stimulation by luteinizing 
hormone [43,44], a peptide hormone released from the pituitary 
gland. It diffuses into Sertoli cells in the seminiferous tubules in the 
testis [45]. Then testosterone binds to androgen receptors in the cy-
toplasm and nucleus of Sertoli cells, and triggers the cellular respons-
es needed to support spermatogenesis [45]. 

Several studies have tested the ability of propolis to counteract a 
reduction in testosterone induced by exogenous toxicants [33-
35,46]. Certain bioactive compounds in propolis, such as the flavo-
noid chrysin, were found to boost testosterone production in the 
testes [47]. At the molecular level, propolis was found to enhance 
steroidogenesis in the testes of diabetic rats by up-regulating the 
mRNA as well as protein levels of steroidogenic acute regulatory pro-
tein (StAR), cytochrome P450 A1 (CYP11A1; an enzyme that converts 
cholesterol to pregnenolone), cytochrome P450 17A1 (CYP17A1), 
3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxys-
teroid dehydrogenase (17β-HSD) [30]. Therefore, the amelioration in 
semen quality parameters under conditions of reproductive toxicity 
may be due to the increased levels of testosterone. 

Propolis extracts have been identified as having a strong antioxi-
dant activity [48-50]. In vitro investigations revealed that the antioxi-
dant power of propolis is attributable to the existence of many bio-
active compounds, particularly phenolic compounds such as flavo-
noids (e.g., tectochrysin, chrysin, pinocembrin, galangin, apigenin, 
genkwanin, and kaempferol [51]), stilbenes, flavan-3-ols (catechins), 
and hydroxybenzoic acids [52]. Additional important phenolic com-
pounds in propolis are cinnamic acid and its derivatives (e.g., hy-
droxycinnamic acids, ferulic acid, caffeic acid, isoferulic acid, and 
p-coumaric acid), as well as gallic acid, which have been identified in 
Polish propolis [53,54].  

One known route by which exogenous toxicants induce reproduc-

tive toxicity in males is by reducing the activity of testicular antioxi-
dant defense mechanisms. Testicular glutathione (GSH) as well as the 
testicular antioxidant enzymes glutathione peroxidase, catalase, and 
superoxide dismutase are often used to measure reproductive toxici-
ty. As Table 2 shows, propolis was able to counteract the induced re-
duction in antioxidant defense mechanisms by enhancing GSH and 
antioxidant enzymes in the testis [29-38,46,55]. Given that a reduc-
tion in antioxidant defense mechanisms is associated with a de-
crease in semen quality [56,57], it is possible to infer that the favor-
able antioxidant effects of propolis may support its ability to improve 
semen quality when reproductive toxicity is induced. 

Malonyl dialdehyde (MDA), which is a stable end product created 
from peroxidation of essential (i.e., polyunsaturated) fatty acids in 
the cell [58], is considered a marker of increased cellular oxidation re-
actions beyond the capacity of antioxidant defense mechanisms, a 
state termed oxidative stress [59-62]. Among 12 mechanistic studies, 
five have revealed a reduction in testicular MDA when propolis is 
present amid induced toxicity conditions (Table 2). This scientific ac-
cord confirms the ability of propolis to protect against induced tes-
ticular oxidative damage by exogenous chemical toxicants. 

One measure of reproductive toxicity is apoptosis in testicular 
cells. It is mediated by caspases, proteolytic enzymes belonging to 
the cysteine protease family, which provoke cell death by cleaving 
specific proteins in the nucleus and cytoplasm. As shown in Table 2, 
propolis treatment was found to reduce copper- [36], cadmium- [35], 
and doxorubicin-induced apoptotic cells in the testes [37], specifical-
ly by reducing increased levels of caspases, in particular caspase-3, in 
induced reproductive toxicity conditions [37]. In addition, propolis 
treatment prevented the immunoreactivity of hypoxia-inducible fac-
tor 1-alpha, and its expression in the testes of the propolis-treated 
group and the control group was found to be similar, compared to 
the cadmium-induced group [35]. 

A second useful marker of reproductive toxicity is the activity of 
testicular lactate dehydrogenase. In germ cells, lactate dehydroge-
nase, particularly type C, is required for energy (adenosine triphos-
phate) production [63]. In effect, a decline in the availability of lactate 
for germ cell development was found to contribute to the impair-
ment of male reproductive function [63,64]. Propolis administration 
has been shown to enhance the activity of lactate dehydrogenase in 
conditions of induced reproductive toxicity, such as streptozotocin- 
and benzo[a]pyrene-induced toxicity [38,30]. 

Nitric oxide is a gaseous signaling molecule synthesized naturally 
in the body by nitric oxide synthases [47,65,66]. It acts as a vasodila-
tor, particularly for blood vessels and inner muscles, which conse-
quently increases circulation in these tissues [67]. Nitric oxide has 
been found to have a crucial role in male reproduction [68,69]. For 
example, it boosts the blood flow in the testes, thereby enhancing 
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Table 2. Mechanistic studies on the effect of propolis in conditions of induced reproductive toxicity utilizing different toxicants 

Toxicant (dose) Study population Propolis dose (duration)
Mechanisms of the actions of propolis  

in the presence of toxicant
Reference

Cisplatin (3 mg/kg) Male rats 100 mg/kg (21 days) (+) Testicular GSH, CAT, GPx, and Bcl2 [29]
(–) Testicular MDA and Bax

Streptozotocin (60 mg/kg) Male rats 300 mg/kg (28 days) (+) Testicular testosterone and serum testosterone [30]
(+) mRNA of AR and LH receptor
(+) StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD 

proteins
(+) Testicular MCT2, MCT4, and mRNA of LDHc

Paclitaxel (5 mg/kg) Adult male rats 50 mg/kg/day (28 days) (–) Testicular DNA damage [31]
(+) Testicular GSH content

Mitomycin C (2, 4, and 8 mg/
kg BW)

Male mice 400 mg/kg (35 days) (+) Testicular testosterone [32]
(+) Inhibin B level
(–) Testicular oxidative stress

Triphenyltin (0.5 mg/kg BW) Male rabbits 50 mg/kg (84 days) (+) Plasma testosterone [33]
(+) Weights of epididymis and testes
(+) Seminal plasma glutathione S-transferase
(+) Seminal plasma phosphatases and transaminases
(–) Seminal plasma TBARS
(–) Seminal plasma LDH

Aluminum chloride (34 mg/kg 
BW)

Male rats 50 mg/kg (70 days) (+) Plasma testosterone [34]
(+) Plasma 17-ketosteroid reductase
(+) Testicular GST and CAT
(+) Testicular GSH

Cadmium (1 mg/kg/day) Male rats 50 mg/kg (17 days) (–) Number of apoptotic cells in the testes [35]
(–) HIF-1α expression
(+/–) Serum testosterone

Copper (128 mg/kg) Male rats 100 mg/kg/day (21 days) (+) Testicular SOD, CAT, GSH [36]
(+) Johnsen's testicular score
(+) Spermatogenesis activity
(–) Testicular MDA
(–) Number of apoptotic cells in the testes

Doxorubicin (6 doses at 18 
mg/kg)

Male rats 200 mg/kg (5 day/wk) (21 days) (+) Testicular interleukin-4 content [37]
(+) Testicular GSH
(–) Testicular MDA
(–) Testicular myeloperoxidase and caspase-3
(–) Testicular TNFα and Fas-L
(–) Number of apoptotic cells in the testes

Benzo[a]pyrene (500 µM) Human ejaculated 
sperm

6, 12, and 25 µg/mL (1 hour) (–) H2O2-induced oxidation in sperm [38]
(–) TBARS formation in sperm
(–) LDH release in sperm

CCl4 (3 mL/kg/day) Adult male albino 
rats

200 mg/kg/day (28 days) (+) Serum testosterone [46]
(–) Testicular MDA
(+) Testicular GSH
(+) Testicular GPx, CAT, and SOD
(–) Testicular TNFα gene expression
(–) Testicular inflammation

Nω-nitro-l-arginine methyl  
ester (l-NAME) (40 mg/kg/
day, for 15 days)

Hypertensive male 
rats

200 mg/kg (5 days) (+) Testicular MDA [55]
(–) Testicular CAT
(+/–) Nitric oxide ([+] with only propolis))

GSH, glutathione; CAT, catalase; GPx, glutathione peroxidase; Bcl2, B-cell lymphoma 2; MDA, malonyl dialdehyde; BAX, BCL2 associated X protein; AR, 
androgen receptor; LH, luteinizing hormone; StAR, steroidogenesis acute regulatory protein; CYP11A1, cytochrome P450 A1; CYP17A1, cytochrome P450 
17A1; HSD, hydroxysteroid dehydrogenase; MCT, monocarboxylate transporter; LDHc, lactate dehydrogenase type C; BW, body weight; TBARS, thiobarbituric 
acid-reactive substances; LDH, lactate dehydrogenase; GST, glutathione-S-transferase; HIF-1α, hypoxia-inducible factor 1-alpha; SOD, superoxide dismutase; 
TNFα, tumor necrosis factor alpha; Fas-L, Fas ligand.
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the activity of their physiological processes [70]. One important ex-
ample is boosting testosterone synthesis by Leydig cells and subse-
quently activating spermatogenesis in Sertoli cells [71-73]. In male 
rats, propolis has been found to increase nitric oxide production in 
testicular tissue [55], which may support spermatogenesis. 

In summary, there is evidence that propolis ameliorates reproduc-
tive toxicity and improves semen quality in vivo in test animals, but 
not in humans. Mechanistically, the protective effects of propolis 
may be due to reducing testicular oxidative damage, enhancing tes-
ticular antioxidant defense mechanisms, enhancing production of 
nitric oxide, reducing testicular apoptosis and cell death, and improv-
ing testosterone production. 
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