DOI QR코드

DOI QR Code

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che (School of Engineering and Technology, China University of Geosciences) ;
  • Pengfei Chang (School of Engineering and Technology, China University of Geosciences) ;
  • Mingyi Sun (School of Engineering and Technology, China University of Geosciences)
  • Received : 2022.07.12
  • Accepted : 2023.03.23
  • Published : 2023.04.25

Abstract

Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Keywords

Acknowledgement

This article is based upon work supported by the National Natural Science Foundation of China (No. 42107201, 41572301) and the Fundamental Research Funds for the Central Universities of China (No. 2-65-2019-225). The authors thank Bin Zhang and Yajun Li for insightful reviews on an earlier version of this article. The authors would also like to acknowledge two anonymous reviewers who have contributed significantly to improving and enriching this paper. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the sponsors.

References

  1. Abrahamson, N.A., Silva, W.J. and Kamai R. (2013), "Update of the AS08 ground-motion prediction equations based on the NGA-West2 data set", Research Report No. 2013-04; Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, USA. 
  2. Ancheta, T.D., Darragh R.B., Stewart J.P. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193/070913EQS197M. 
  3. Argyroudis, S.A. and Pitilakis, K.D. (2012), "Seismic fragility curves of shallow tunnels in alluvial deposits", Soil Dyn. Earthq. Eng., 35, 1-12. https://doi.org/10.1016/j.soildyn.2011.11.004. 
  4. Bindi, D., Iervolino, I. and Parolai, S. (2016), "On-site structure-specific real-time risk assessment: Perspectives from the REAKT project", Bull. Earthq. Eng., 14, 2471-2493. https://doi.org/10.1007/s10518-016-9889-4. 
  5. Boore, D.M., Stewart, J.P., Seyhan, E. and Atkinson, G.M. (2014), "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes", Earthq. Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113eqs184m. 
  6. Deierlein, G.G., Krawinkler, H. and Cornell, C.A. (2003), "A framework for performance-based earthquake engineering", Seventh Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, February. 
  7. DeVries, P.M.R., Viegas, F., Wattenberg, M. and Meade, B.J. (2018), "Deep learning of aftershock patterns following large earthquakes", Nat., 560, 632-634. https://doi.org/10.1038/s41586-018-0438-y. 
  8. Du, X., Jiang, J., Naggar, M., Xu, C. and Xu, Z. (2021), "Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles", Earthq. Eng. Struct. Dyn., 50(2), 655-672. https://doi.org/10.1002/eqe.3351. 
  9. Du, X.L., Jiang, J.W., Xu, Z.G., Xu, C.S. and Liu, S.Q. (2019), "Study on quantification of seismic performance index for rectangular frame subway station structure", China Civil Eng. J., 52(10), 111-119. https://doi.org/10.15951/j.tmgcxb.2019.10.009. 
  10. Dulinska, J.M. and Murzyn, I.J. (2017), "Seismic performance of a concrete highway tunnel under earthquake sequence using a concrete damage plasticity model", Key Eng. Mater., 725, 110-115. https://doi.org/10.4028/www.scientific.net/kem.725.110. 
  11. FEMA P-1050 (2015), NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, Building Seismic Safety Council, Washington, D.C., USA. 
  12. GB50909-2014 (2014), Code for Seismic Design of Urban Rail Transit Structures, China Planning Press, Beijing, China. 
  13. Giovanis, D.G., Fragiadakis, M. and Papadopoulos, V. (2016), "Epistemic uncertainty assessment using incremental dynamic analysis and neural networks", Bull. Earthq. Eng., 14, 529-547. https://doi.org/10.1007/s10518-015-9838-7. 
  14. Goda, K. (2012), "Nonlinear response potential of mainshock-aftershock sequences from Japanese earthquakes", Bull. Seismol. Soc. Am., 102(5), 2139-2156. https://doi.org/10.1002/eqe.2188. 
  15. Hashash, Y.M.A., Hook, J.J., Schmidt, B. and Yao, J.I.C. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Space Technol., 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7. 
  16. He, L., Song, Y., Dai, S.Z. and Katrina, D. (2012), "Quantitative research on the capacity of urban underground space - The case of Shanghai, China", Tunn. Undergr. Space Technol., 32(11), 168-179. https://doi.org/10.1016/j.tust.201 2.06.008. 
  17. Herrmann, M., Douglas, Z.J. and Wiemer, S. (2016), "Communicating time-varying seismic risk during an earthquake sequence", Seismol. Res. Lett., 87, 301-312. https://doi.org/10. 1785/0220150168.  https://doi.org/10.1785/0220150168
  18. Hiroomi, I., Toshio, H., Nozomu, Y. and Masahiko, I. (1996), "Damage to daikai subway station during the 1995 Hyogoken-Nambu earthquake and its investigation", Soil. Found., 36, 283-300. https://doi.org/10.3208/sandf.36.special_283. 
  19. Hu, S., Gardoni, P. and Xu, L. (2018), "Stochastic procedure for the simulation of synthetic main shock-aftershock ground motion sequences", Earthq. Eng. Struct. Dyn., 47(4), 2275-2296. https://doi.org/10.1002/eqe.3068. 
  20. Iervolino, I., Giorgio, M. and Chioccarelli, E. (2016), "Markovian modeling of seismic damage accumulation", Earthq. Eng. Struct. Dyn., 45, 441-461. https://doi.org/10.1002/eqe.2668. 
  21. Jalayer, F. and Ebrahimian, H. (2017), "Seismic risk assessment considering cumulative damage due to aftershocks", Earthq. Eng. Struct. Dyn., 46, 369-389. https://doi.org/10.1002/eqe.2792. 
  22. Kusakabe, R., Fujita, K., Ichimura, T., Ichimura, T., Yamaguchi, T., Hori, M. and Wijerathne, L. (2021), "Development of regional simulation of seismic ground-motion and induced liquefaction enhanced by GPU computing", Earthq. Eng. Struct. Dyn., 50(1), 197-213. https://doi.org/10.1002/eqe.3369. 
  23. Li, T. (2012), "Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction", Bull. Eng. Geol. Environ., 71(2), 297-308. https://doi.org/10.1007/s10064-011-0367-6. 
  24. Liu, G., Xiao, M. and Chen, J. (2019), "Seismic performance assessment of tunnel structure based on incremental dynamic analysis", Adv. Eng. Sci., 16(6), 705-714. https://doi.org/10.15961/j.jsuese.201800776. 
  25. Ma, C., Lu, D.C. and Du, X.L. (2018), "Seismic performance upgrading for underground structures by introducing sliding isolation bearings", Tunn. Undergr. Space Technol., 74, 1-9. https://doi.org/10.1016/j.tust.2018.01.007. 
  26. Ma, C., Lu, D.C., Du, X.L., Qi, C.Z. and Zhang, X.Y. (2019), "Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes", Soil Dyn. Earthq. Eng., 119, 265-280. https://doi.org/10.1016/j.soildyn.2019.01.017. 
  27. Martin, P.P. and Seed, H.B. (1982), "One-dimensional dynamic ground response analyses", J. Geotech. Eng. Div., 108(7), 935-952. https://doi.org/10.1016/0148-9062(83)91690-x. 
  28. Mohammadi-Hajia, B. and Ardakani, A. (2020), "Performance-based analysis of tunnels under seismic events with nonlinear features of soil mass and lining", Soil Dyn. Earthq. Eng., 134(43), 106158. https://doi.org/10.1016/j.soildyn.2020.106158. 
  29. Mohsenian, V., Gharaei-Moghaddam, N. and Hajirasouliha, I. (2021), "Seismic performance assessment of tunnel form concrete structures under earthquake sequences using endurance time analysis", J. Build. Eng., 40, 10-24. https://doi.org/10.1016/j.jobe.2021.102327. 
  30. Nguyen, D.D., Park, D., Shamsher, S., Nguyen, V.Q. and Lee, T.H. (2019), "Seismic vulnerability assessment of rectangular cut-and-cover subway tunnels", Tunn. Undergr. Space Technol., 86, 247-261. https://doi.org/10.1016/j.tust.2019.01.021. 
  31. Papadopoulos, A.N., Kohrangi, M. and Bazzurro, P. (2019), "Correlation of spectral acceleration values of mainshock-aftershock ground motion Pairs", Earthq. Spectra, 35(1), 39-60. https://doi.org/10.1193/020518eqs033m. 
  32. Parker, M. and Steenkamp, D. (2012), "The economic impact of the Canterbury earthquakes", Res. Bank New Zealand Bull., 75(3), 13-25. 
  33. Parra-Montesinos, G.J., Bobet, A. and Ramirez, J.A. (2006), "Evaluation of soil-structure interaction and structural collapse in Daikai subway station during Kobe earthquake", ACI Struct. J., 103(1), 113-122. https://doi.org/10.1109/ECTC.2006.1645929. 
  34. Post, R.A.J, Michels, M.A.J. and Ampuero, J.P. (2021), "Interevent-time distribution and aftershock frequency in non-stationary induced seismicity", Sci. Rep., 11, 3540. https://doi.org/10.1038/s41598-021-82803-2. 
  35. Shokrabadi, M. and Burton, H.V. (2018), "Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames", Struct. Saf., 73, 64-74. https://doi.org/10.1016/j.strusafe.2018.03.003. 
  36. Singh, D.K., Mandal, A., Karumanchi, S.R., Murmu, A. and Sivakumar, N. (2018), "Seismic behaviour of damaged tunnel during aftershock", Eng. Fail. Anal., 93, 44-54. https://doi.org/10.1016/j.engfailanal.2018.06.028. 
  37. Sun, B., Zhang, S., Deng, M. and Wang, C. (2020), "Nonlinear dynamic analysis and damage evaluation of hydraulic arched tunnels under mainshock-aftershock ground motion sequences", Tunn. Undergr. Space Technol., 98, 1-20. https://doi.org/10.1016/j.tust.2020.103321. 
  38. Trevlopoulos, K., Gueguen, P., Helmstetter, A. and Cotton, F. (2020), "Earthquake risk in reinforced concrete buildings during aftershock sequences based on period elongation and operational earthquake forecasting", Struct. Saf., 84, 101922. https://doi.org/10.1016/j.strusafe.2020.101922. 
  39. Tsinidis, G. (2017), "Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking", Tunn. Undergr. Space Technol., 62, 1-22. https://doi.org/10.1016/j.tust.2016.11.003. 
  40. Vahedian, V., Omranian, E. and Abdollahzadeh, G. (2019), "A new method for generating aftershock records using artificial neural network", J. Earthq. Eng., 26(1), 140-161. https://doi.org/10.1080/13632469.2019.1664675. 
  41. Wooddell, K.E. and Abrahamson, N.A. (2014), "Classification of main shocks and aftershocks in the NGA-West2 database", Earthq. Spectra, 30(3), 1257-1267. https://doi.org/10.1193/071913eqs208m. 
  42. Xie, M.Y., Shi, B.P. and Lin, L.C. (2018), "Aftershock rate decay induced by postseismic creep: A case study from the Mw 7.9 Wenchuan earthquake sequence", Acta Seismol. Sin., 40(3), 316-331. https://doi.org/10.11939/jass.20170124. 
  43. Yeo, G.L. and Cornell, C.A. (2009), "A probabilistic framework for quantification of aftershock ground-motion hazard in California: Methodology and parametric study", Earthq. Eng. Struct. Dyn., 38, 45-60. https://doi.org/10.1002/eqe.840. 
  44. Yu, Y.X., Li, S.Y. and Xiao, L. (2013), "Development of ground motion attenuation relations for the new seismic hazard map of China", Technol. Earthq. Disaster Prev., 8(1), 24-33. https://doi.org/10.11899/zzfy20130103. 
  45. Zhang, L.J., Zhai, Y.F., Cui, B.H., Tang, Y.J. and Bi, Z.H. (2021), "A novel method for constructing main-aftershock sequences and its application in the global damage accumulation effects analysis of gravity dams", Shock Vib., 2021, 1-12. https://doi.org/10.1155/2021/9356540. 
  46. Zhong, Z., Shen, Y., Zhao, M., Li, L. and Hao, H. (2020), "Seismic fragility assessment of the Daikai subway station in layered soil", Soil Dyn. Earthq. Eng., 132, 106044. https://doi.org/10.1016/j.soildyn.2020.106044. 
  47. Zhu, R.G., Lu, D.G., Yu, X.H. and Wang, G.Y. (2017), "Conditional mean spectrum of aftershocks", Bull. Seismol. Soc. Am., 107(4), 1940-1953. https://doi.org/10.1785/0120160254.