DOI QR코드

DOI QR Code

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros (Department of Structural Engineering, Faculty of Engineering, Cairo University) ;
  • Mousa M. Farag (Department of Structural Engineering, Faculty of Engineering, Cairo University) ;
  • Sameh S.F. Mehanny (Department of Structural Engineering, Faculty of Engineering, Cairo University)
  • Received : 2022.07.03
  • Accepted : 2023.03.16
  • Published : 2023.04.25

Abstract

Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Keywords

References

  1. Abbasi, S., Ardakani, A. and Yakhchalian, M. (2021), "The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions", Earthq. Struct., 20(1), 87-96. https://doi.org/10.12989/eas.2021.20.1.087. 
  2. Abdel Raheem, S.E., Alazrak, T.M.A., AbdelShafy, A.G.A, Ahmed, M.M. and Gamal, Y.A.S. (2021), "Seismic pounding between adjacent buildings considering soil-structure interaction", Earthq. Struct., 20(1), 55-70. https://doi.org/10.12989/eas.2021.20.1.055. 
  3. Abdel Raheem, S.E. (2016), "Exploring damping characteristics of composite tower of cable-stayed bridges", Sadhana, 41(3), 345-358. https://doi.org/10.1007/s12046-016-0467-x. 
  4. Chang, D., Boulanger, R., Brandenberg, S. and Kutter, B. (2013), "FEM analysis of dynamic soil-pile-structure interaction in liquefied and laterally spreading ground", Earthq. Spectra, 29(3), 733-755. https://doi.org/10.1193/1.4000156. 
  5. Chong, S.H. (2017), "Soil dynamic constitutive model for characterizing the nonlinear-hysteretic response", Appl. Sci., 7(11), 1110. https://doi.org/10.3390/app7111110. 
  6. D'Avila, M.P.S., Lenti, L., Martino, S. and Romeo, R.W. (2019), "Nonlinear Numerical simulation of the soil seismic response to the 2012 Mw 5.9 Emilia Earthquake considering the variability of the water table position", Bull. Seismol. Soc. Am., 109(2), 505-524. https://doi.org/10.1785/0120170345. 
  7. D'Avila, M.P.S., Lenti, L. and Semblat, J.F., (2012), "Modelling strong seismic ground motion: Three-dimensional loading path versus wavefield polarization", Geophys. J. Int., 190(3), 1607-1624. https://doi.org/10.1111/j.1365-246X.2012.05599.x. 
  8. Delepine, N., Bonnet, G., Lenti, L. and Semblat, J.F. (2009), "Nonlinear viscoelastic wave propagation: An extension of nearly constant attenuation models", J. Eng. Mech., 135(11), 1305-1314. https://doi.org/10.1061/(asce)0733-9399(2009)135:11(1305). 
  9. Derbal, R., Benmansour, N., Djafour, M., Matallah, M. and Ivorra, S. (2019), "Viaduct seismic response under spatial variable ground motion considering site conditions", Earthq. Struct., 17(6), 557-566. https://doi.org/10.12989/eas.2019.17.6.557. 
  10. Dhar, S., Ozcebe, A.G., Dasgupta, K., Petrini, L. and Paolucci, R. (2019), "Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge" Earthq. Struct., 17(4), 373-385. https://doi.org/10.12989/eas.2019.17.4.373. 
  11. Fragiadakis, M. and Diamantopoulos, S. (2020). "Fragility and risk assessment of freestanding building contents", Earthq. Eng. Struct. Dyn., 49(10), 1028-1048. https://doi.org/10.1002/eqe.3276. 
  12. Hutchinson, T.C., Chai, Y.H., Boulanger, R.W. and Idriss, I.M. (2004), "Inelastic seismic response of extended pile-shaft-supported bridge structures", Earthq. Spectra, 20(4), 1057-1080. https://doi.org/10.1193/1.1811614. 
  13. Jakka, R.S., Hussain, M. and Sharma, M.L. (2015), "Effects on amplification of strong ground motion due to deep soils", Geomech. Eng., 8(5), 663-674. https://doi.org/10.12989/gae.2015.8.5.663. 
  14. Lysmer, J. (1978), "Analytical procedures in soil dynamics", NASA STI/Recon Technical Report N, 80, 12243.
  15. Kramer, S.L. (1996), Geotechnical Earthquake Engineering, 1st Edition, Prentice-Hall International, Hoboken, NJ, USA. 
  16. Kimura, T., Takemura, J., Hirooka, A., Ito, K., Matsuda, T. and Toriihara, M. (1993), "Numerical prediction for model N", Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Volume 1, 1st Edition, Taylor & Francis/A.A. Balkema, Oxfordshire, UK. 
  17. Kumar, S.S. and Dey, A. (2015), "1D ground response analysis to identify liquefiable substrata: Case study from Guwahati City", UKIERI Workshop on Seismic Requalification of Pile Supported Structures (SRPSS), Guwahati, Assam, India, January. 
  18. McGann, C. and Arduino, P. (2011), "Site response analysis of a layered soil column (Total stress analysis)", OpenSees User's Manual, University of California, Berkeley, CA, USA. 
  19. Moghaddam, A.B. and Bagheripour M.H. (2014), "Optimization of ground response analysis using wavelet-based transfer function technique", Geomech. Eng., 7(2), 149-164. https://doi.org/10.12989/gae.2014.7.2.149. 
  20. Montans, F.J. (2000), "Bounding surface plasticity model with extended masing behavior", Comput. Meth. Appl. Mech. Eng., 182(1-2), 135-162. https://doi.org/10.1016/s0045-7825(99)00089-4. 
  21. Nakamura, N. (2013), "Response analysis of soil deposit considering both frequency and strain amplitude dependencies using nonlinear causal hysteretic damping model", Earthq. Struct., 4(2), 181-202. https://doi.org/10.12989/eas.2013.4.2.181. 
  22. OpenSees 2.0.0 (2011), Computer Software, Pacific Earthquake Engineering. Research Center, University of California, Berkeley, CA, USA. 
  23. Pitilakis, K.D., Karapetrou, S.T. and Fotopoulou, S.D. (2014), "Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings", Bull. Earthq. Eng., 12(4), 1755-1776. https://doi.org/10.1007/s10518-013-9575-8. 
  24. Ramadan, O.M.O., Mehanny, S.S.F. and Kotb, A.A.M. (2020), "Assessment of seismic vulnerability of continuous bridges considering soil-structure interaction and wave passage effects", Eng. Struct., 206(1), 110161. https://doi.org/10.1016/j.engstruct.2019.110161. 
  25. Ramsamooj, D.V. and Alwash, A.J. (1997). "Model prediction of cyclic response of soil", J. Geotech. Eng., 116(7), 1053-1072. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1053). 
  26. Rathje, E.M. and Navidi, S. (2013), "Identification of site parameters that improve predictions of site amplification", PEER Report 18, University of California, Berkeley, CA, USA. 
  27. Roy, N. and Sahu, R.B. (2012), "Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata", Geomech. Eng., 4(1), 1-18. https://doi.org/10.12989/gae.2012.4.1.001. 
  28. Saffarian, M.A. and Bagheripour, M.H. (2014), "Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach, Part II: Nonlinear HFTD and numerical examples", Geomech. Eng., 6(6), 531-544. https://doi.org/10.12989/gae.2014.6.6.531. 
  29. Schnabel, P.B., Lysmer, J. and Seed, H.B. (1972), "SHAKE: A computer program for earthquake response analysis of horizontally layered sites", Report No. UCB/EERC-72/12; Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 
  30. Sharifi, B., Nouri, G. and Ghanbari, A. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses" Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667. 
  31. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. https://doi.org/10.12989/gae.2018.16.4.435 
  32. Spears, R., Veeraraghavan, S. and Coleman, J.L. (2019), "Nonlinear modelling of ground motions at Lotung LSST site with nested surface soil constitutive model", Nucl. Technol., 205(9), 1205-1218. https://doi.org/10.1080/00295450.2019.1584492. 
  33. Tawadros, H.W.S., Farag, M.M.N. and Mehanny, S.S.F. (2022), "Extent and hierarchy of seismic induced inelastic demands in the substructure system of bridges on piled foundation crossing waterways", Bull. Earthq. Eng., 20(8), 3889-3919. https://doi.org/10.1007/s10518-022-01350-x. 
  34. Tran, N.L., Aaqib, M., Nguyen, B.P., Nguyen, D.D., Tran, V.L. and Nguyen, V.Q. (2021), "Evaluation of seismic site amplification using 1d site response analyses at Ba Dinh Square Area, Vietnam", Adv. Civil Eng., 2021, 1-11. https://doi.org/10.1155/2021/3919281. 
  35. Wang, Z., Duenas-Osorio, L. and Padgett, J.E., (2014), "Influence of soil-structure interaction and liquefaction on the isolation efficiency of a typical multispan continuous steel girder bridge", J. Bridge Eng., 19(8), A4014001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000526. 
  36. Yoshida, N. and Iai, S. (1998), "Nonlinear site response and its evaluation and prediction", The Effects of Surface Geology on Seismic Motion, 1998, 71-90. 
  37. Zhang, Y., Chen, X., Zhang, X., Ding, M., Wang, Y. and Liu Z. (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi.org/10.12989/eas.2020.19.4.273. 
  38. Zhao, M., Yin, H., Du, X., Liu, J. and Liang, L. (2015), "1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake", Earthq. Struct., 9(1), 173-194. https://doi.org/10.12989/eas.2015.9.1.173.