DOI QR코드

DOI QR Code

Seismic isolation of nuclear power plant based on layered periodic foundation

  • Mi Zhao (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology) ;
  • Qun Chen (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology) ;
  • Junqi Zhang (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology) ;
  • Xiuli Du (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology)
  • 투고 : 2022.10.21
  • 심사 : 2023.03.14
  • 발행 : 2023.04.25

초록

In this paper, mechanical properties of periodic foundation made of concrete and rubber are investigated by a parametric study using the finite element method (FEM). Periodic foundation is a special type of seismic isolation foundation used in civil engineering, which is inspired by the meso-scale structure of phononic crystals in solid-state physics. This type of foundation is capable of reducing the seismic wave propagating though the foundation, therefore providing additional protection for the structures. In the FEM analysis, layered periodic foundation is frequently modelled due to its simplicity in numerical modeling. However, the isolation effect of periodic foundation on nuclear power plant has not been fully discussed to the best knowledge of authors. In this work, we construct four numerical models of nuclear power plant with different foundations to investigate the seismic isolation effects of periodic foundations. The results show that the layered periodic foundation can increase the natural period of the nuclear power plant like traditional base isolation systems, which is beneficial to the structures. In addition, the seismic response of the nuclear power plant can also be effectively reduced in both vertical and horizontal directions when the frequencies of the incident waves fall into some specific frequency bandgaps of the periodic foundation. Furthermore, it is demonstrated that the layered periodic foundation can reduce the amplitude of the floor response spectrum, which plays an important role in the protection of the equipment.

키워드

과제정보

This research was supported by the National Natural Science Foundation of China (51738001). The support is gratefully acknowledged.

참고문헌

  1. Ahmed, K., Kim, D. and Lee, S.H. (2018), "Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure", Earthq. Struct., 14(1), 33-44. https://doi.org/10.12989/eas.2018.14.1.033.
  2. Albino, C., Godinho, L., Amado-Mendes, P., Alves-Costa, P., Dias-da-Costa, D. and Jr, D.S. (2019), "3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation", Eng. Struct., 196, 109340. https://doi.org/10.1016/j.engstruct.2019.109340.
  3. Ali, S.B. and Kim, D. (2017), "Wavelet analysis of soil-structure interaction effects on seismic responses of base-isolated nuclear power plants", Earthq. Struct., 13(6), 561-572. https://doi.org/10.12989/eas.2017.13.6.561.
  4. Bao, J., Shi, Z. and Xiang, H. (2012), "Dynamic responses of a structure with periodic foundations", J. Eng. Mech., 138(7), 761-769. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000383.
  5. Basone, F., Wenzel, M., Bursi, O.S. and Fossetti, M. (2019), "Finite locally resonant metafoundations for the seismic protection of fuel storage tanks", Earthq. Eng. Struct. Dyn., 48, 232-252. https://doi.org/10.1002/eqe.3134.
  6. Casablanca, O., Ventura, G., Garesci, F., Azzerboni, B., Chiappini, M. and Finocchio, G. (2018), "Seismic isolation of buildings using composite foundations based on metamaterials", J. Appl. Phys., 123, 174903. https://doi.org/10.1063/1.5018005.
  7. Chen, J., Zhao, C., Xu, Q. and Yuan, C. (2014), "Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading", Nucl. Eng. Des., 278, 117-133. https://doi.org/10.1016/j.nucengdes.2014.07.030.
  8. Chen, X., Shi, Z.F. and Xiang H. (2012), "Attenuation of building vibration using periodic foundations", Adv. Struct. Eng., 15(8), 1375-1388. https://doi.org/10.1260/1369-4332.15.8.1375.
  9. Cheng, Z., Shi, Z. and Palermo, A. (2020), "Seismic vibrations attenuation via damped layered periodic foundations", Eng. Struct., 211, 110427. https://doi.org/10.1016/j.engstruct.2020.110427.
  10. Cheng, Z.B. and Shi, Z.F. (2013), "Novel composite periodic structures with attenuation zones", Eng. Struct., 56, 1271-1282. https://doi.org/10.1016/j.engstruct.2013.07.003.
  11. Cheng, Z.B. and Shi, Z.F. (2018), "Composite periodic foundation and its application for seismic isolation", Earthq. Eng. Struct. Dyn., 47, 925-944. https://doi.org/10.1002/eqe.2999.
  12. Colombi, A., Zaccherini, R., Aguzzi, G., Palermo, A. and Chatzi, E. (2020), "Mitigation of seismic waves: Metabarriers and metafoundations bench tested", J. Sound Vib., 485, 115537. https://doi.org/10.1016/j.jsv.2020.115537.
  13. Coulier, P., Cuellar, V., Degrande, G. and Lombaert,G. (2015), "Experimental and numerical evaluation of the effectiveness of a stiff wave barrier in the soil", Soil. Dyn. Earthq. Eng., 77, 238-253. https://doi.org/10.1016/j.soildyn.2015.04.007.
  14. Geng, Q., Zhu, S. and Chong, K.P. (2018), "Issues in design of one-dimensional metamaterials for seismic protection", Soil. Dyn. Earthq. Eng., 107, 264-278. https://doi.org/10.1016/j.soildyn.2018.01.028.
  15. Huang, H.W., Wang, J. and Zhao, C. (2021), "Two-dimensional finite-element simulation of periodic barriers", J. Eng. Mech., 147(2), 04020150. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001891.
  16. Huang, J., Liu, W. and Shi, Z. (2017), "Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction", Const. Build. Mater., 141, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.02.153.
  17. Huang, J. and Shi, Z. (2013a), "Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves", J. Sound Vib., 332(19), 4423-4439. https://doi.org/10.1016/j.jsv.2013.03.028.
  18. Huang, J.K. and Shi, Z.F. (2013b), "Application of periodic theory to rows of piles for horizontal vibration attenuation", Int. J. Geomech., 13, 132-142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000193.
  19. Huang, J.K. and Shi, Z.F. (2015), "Vibration reduction of plane waves using periodic in-filled pile barriers", J. Geotech. Geoenviron. Eng., 141(6), 04015018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001301.
  20. Huang, Y.N., Whittaker, A.S., Constantinou, M.C. and Malushte, S. (2007), "Seismic demands on secondary systems in base-isolated nuclear power plants", Earthq. Eng. Struct. Dyn., 36, 1741-1761. https://doi.org/10.1002/eqe.716.
  21. Huang, Y.N., Whittaker, A.S., Kennedy, R.P. and Mayes, R.L. (2013), "Response of base isolated nuclear structures for design and beyond-design basis earthquake shaking", Earthq. Eng. Struct. Dyn., 42, 339-356. https://doi.org/10.1002/eqe.2209.
  22. Huang, Y.N., Whittaker, A.S. and Luco, N. (2010), "Seismic performance assessment of base-isolated safety-related nuclear structures", Earthq. Eng. Struct. Dyn., 39, 1421-1442. https://doi.org/10.1002/eqe.716.
  23. Huang, Y.N., Whittaker, A.S. and Luco, N. (2011a), "A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology", Nucl. Eng. Des., 241, 3996-4003. https://doi.org/10.1016/j.nucengdes.2011.06.051.
  24. Huang, Y.N., Whittaker, A.S. and Luco, N. (2011b), "A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application", Nucl. Eng. Des., 241, 3985-3995. https://doi.org/10.1016/j.nucengdes.2011.06.050.
  25. Jia, G. and Shi, Z. (2010), "A new seismic isolation system and its feasibility study", Earthq. Eng. Eng. Vib., 9(1), 75-82. https://doi.org/10.1007/s11803-010-8159-8.
  26. Kumar, K., Whittaker, A.S. and Constantinou, M.C. (2017a), "Extreme earthquake response of nuclear power plants isolated using sliding bearings", Nucl. Eng. Des., 316, 9-25. https://doi.org/10.1016/j.nucengdes.2017.02.030.
  27. Kumar, M., Whittaker, A.S., Kennedy, R.P., Johnson, J.J. and Kammerer, A. (2017b), "Seismic probabilistic risk assessment for seismically isolated safety-related nuclear facilities", Nucl. Eng. Des., 313, 386-400. https://doi.org/10.1016/j.nucengdes.2016.12.031.
  28. Liu, X., Shi, Z. and Mo, Y.L. (2016a), "Attenuation zones of initially stressed periodic Mindlin plates on an elastic foundation", Int. J. Mech. Sci., 115-116, 12-23. https://doi.org/10.1016/j.ijmecsci.2016.06.010.
  29. Liu, X., Shi, Z., Mo, Y.L. and Cheng, Z. (2016b), "Effect of initial stress on attenuation zones of layered periodic foundations", Eng. Struct., 121, 75-84. https://doi.org/10.1016/j.engstruct.2016.04.049.
  30. Liu, X., Shi, Z., Xiang, H. and Mo, Y.L. (2015), "Attenuation zones of periodic pile barriers with initial stress", Soil Dyn. Earthq. Eng., 77, 381-390. https://doi.org/10.1016/j.soildyn.2015.06.010.
  31. Luca, A.D. and Guidi, L.G. (2019), "State of art in the worldwide evolution of base isolation design", Soil Dyn. Earthq. Eng., 125, 105722. https://doi.org/10.1016/j.soildyn.2019.105722.
  32. Martakis, P., Aguzzi, G., Dertimanis, V.k. and Chatzi, E.N. (2021), "Nonlinear periodic foundations for seismic protection: Practical design, realistic evaluation and stability considerations", Soil Dyn. Earthq. Eng., 150, 106934. https://doi.org/10.1016/j.soildyn.2021.106934.
  33. Meng, L., Cheng, Z. and Shi, Z. (2020a), "Vibration mitigation in saturated soil by periodic in-filled pipe pile barriers", Comput. Geotech., 124, 103633. https://doi.org/10.1016/j.compgeo.2020.103633.
  34. Meng, L., Cheng, Z. and Shi, Z. (2020b), "Vibration mitigation in saturated soil by periodic pile barriers", Comput. Geotech., 117, 103251. https://doi.org/10.1016/j.compgeo.2019.103251.
  35. Meng, L., Cheng, Z. and Shi, Z. (2021), "Filtering property of periodic pile barriers under moving loads", Comput. Geotech., 136, 104244. https://doi.org/10.1016/j.compgeo.2021.104244.
  36. Pu, X. and Shi, Z. (2018), "Surface-wave attenuation by periodic pile barriers in layered soils", Const. Build. Mater., 180, 177-187. https://doi.org/10.1016/j.conbuildmat.2018.05.264.
  37. Pu, X. and Shi, Z. (2019), "Periodic pile barriers for Rayleigh wave isolation in a poroelastic half-space", Soil. Dyn. Earthq. Eng., 121, 75-86. https://doi.org/10.1016/j.soildyn.2019.02.029.
  38. Salandra, V.L., Wenzel, M., Bursi, O.S., Carta, G. and Movchan, A.B. (2017), "Conception of a 3D metamaterial-based foundation for static and seismic protection of fuel storage tanks", Front. Mater., 4, 1-13. https://doi.org/10.3389/fmats.2017.00030.
  39. Shi, Z., Cheng, Z. and Xiang, H. (2014), "Seismic isolation foundations with effective attenuation zones", Soil. Dyn. Earthq. Eng., 57, 143-51. https://doi.org/10.1016/j.soildyn.2013.11.009.
  40. Shi, Z. and Huang, J. (2013), "Feasibility of reducing three-dimensional wave energy by introducing periodic foundations", Soil. Dyn. Earthq. Eng., 50, 204-212. https://doi.org/10.1016/j.soildyn.2013.03.009.
  41. Shi, Z., Wen, Y. and Meng, Q. (2017), "Propagation attenuation of plane waves in saturated soil by pile barriers", Int. J. Geomech., 17(9), 04017053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000963.
  42. Shrimali, B., Lefevre, V. and Lopez-Pamies, O. (2019), "A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers", J. Mech. Phys. Solids, 122, 364-380. https://doi.org/10.1016/j.jmps.2018.09.026.
  43. Shrimali, M.K. and Jangid, R.S. (2002), "Earthquake response of liquid storage tanks with sliding systems", J. Seismol. Earthq. Eng., 4(2-3), 51-61.
  44. Shrimali, M.K. and Jangid, R.S. (2003), "Dynamic analysis of liquid storage tanks with sliding systems", Adv. Struct. Eng., 6 (2), 145-158. https://doi.org/10.1260/136943303769013237.
  45. Shrimali, M.K. and Jangid, R.S. (2004), "Seismic analysis of base-isolated liquid storage tanks", J. Sound,Vib., 275(1-2), 59-75. https://doi.org/10.1016/S0022-460X(03)00749-1.
  46. Shrimali, M.K. (2007), "Seismic response of elevated liquid storage steel tanks under bi-direction excitation", Steel Struct., 7 (4), 239-251.
  47. Shrimali, M.K. (2008), "Earthquake response of elevated liquid storage tanks isolated by FPS under bi-direction excitation", Adv. Vib. Eng., 7(4), 389-405.
  48. Sun, F., Xiao, L. and Bursi, O.S. (2019), "Optimal design and novel configuration of a locally resonant periodic foundation (LRPF) for seismic protection of fuel storage tanks", Eng. Struct., 189, 147-156. https://doi.org/10.1016/j.engstruct.2019.03.072.
  49. Vern, S., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2021), "Behavior of liquid storage tank under multidirectional excitation", Adv. Struct. Technol: Select Proc. CoAST 2019, 81, 203-217. https://doi.org/10.1007/978-981-15-5235-9_16.
  50. Wenzel, M., Bursi, O.S. and Antoniadis, I. (2020), "Optimal finite locally resonant metafoundations enhanced with nonlinear negative stiffness elements for seismic protection of large storage tanks", J. Sound Vib., 483, 115488. https://doi.org/10.1016/j.jsv.2020.115488.
  51. Whittaker, A.S., Sollogoub, P. and Kim, M.K. (2018), "Seismic isolation of nuclear power plants: Past, present and future", Nucl. Eng. Des., 338, 290-299. https://doi.org/10.1016/j.nucengdes.2018.07.025.
  52. Witarto, W., Wang, S.J., Yang, C.Y., Nie, X., Mo, Y.L., Chang, K.C., Tang, Y. and Kassawara, R. (2018), "Seismic isolation of small modular reactors using metamaterials", AIP Adv., 8, 045307. https://doi.org/10.1063/1.5020161.
  53. Witarto, W., Wang, S.J., Yang, C.Y., Wang, J., Mo, Y.L., Chang, K.C. and Tang, Y. (2019), "Three-dimensional periodic materials as seismic base isolator for nuclear infrastructure", AIP Adv., 9, 045014. https://doi.org/10.1063/1.5088609.
  54. Xiang, H.J., Shi, Z.F., Wang, S.J. and Mo, Y.L. (2012), "Periodic materials-based vibration attenuation in layered foundations: Experimental validation", Smart Mater. Struct., 21, 112003. https://doi.org/10.1088/0964-1726/21/11/112003.
  55. Yan, Y., Cheng, Z., Menq, F., Mo, Y.L., Tang, Y. and Shi, Z. (2015), "Three dimensional periodic foundations for base seismic isolation", Smart Mater. Struct., 24, 075006. https://doi.org/10.1088/0964-1726/24/7/075006.
  56. Yan, Y., Laskar, A., Cheng, Z., Menq, F., Tang, Y., Mo, Y.L. and Shi, Z. (2014), "Seismic isolation of two dimensional periodic foundations", J. Appl. Phys., 116, 044908. https://doi.org/10.1063/1.4891837.
  57. Zhao, C. and Chen, J. (2013). "Numerical simulation and investigation of the base isolated NPPC building under three-directional seismic loading", Nucl. Eng. Des., 265, 484-496. https://doi.org/10.1016/j.nucengdes.2013.07.032.
  58. Zhao, C., Zeng, C., Huang, H., Dai, J., Bai, W., Wang, J. and Mo, Y.L. (2021a), "Preliminary study on the periodic base isolation effectiveness and experimental validation", Eng. Struct., 226, 111364. https://doi.org/10.1016/j.engstruct.2020.111364.
  59. Zhao, C., Zeng, C., Witarto, W., Huang, H.W., Dai, J. and Mo, Y.L. (2021b), "Isolation performance of a small modular reactor using 1D periodic foundation", Eng. Struct., 244, 112825. https://doi.org/10.1016/j.engstruct.2021.112825.