DOI QR코드

DOI QR Code

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon (Department of Civil and Environmental Engineering, Myongji University) ;
  • Inkook Yoon (Department of Civil and Environmental Engineering, Myongji University) ;
  • Minjin Kim (Department of Civil and Environmental Engineering, Myongji University) ;
  • Junsu Lee (Department of Civil and Environmental Engineering, Myongji University) ;
  • Younguk Kim (Department of Civil and Environmental Engineering, Myongji University)
  • 투고 : 2022.10.13
  • 심사 : 2023.04.10
  • 발행 : 2023.04.25

초록

This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

키워드

과제정보

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (grant number 22UUTI-C157813-03) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2021R1I1A1A01049067).

참고문헌

  1. ASTM International (2018), Standard Specification for Grout for Masonry, ASTM C476-18, American Society for Testing and Materials, Philadelphia, USA.
  2. Barton, N. (1972). "A model study of air transport from underground openings situated below groundwater level", proceedings of the international society for rock mechanics (ISRM) symposium, Stuttgart.
  3. Barton, N. (2004), "The Why's and how's of high pressure grouting-Part1", Tunn. Tunnelling Int., 36(9), 28-30. http://worldcat.org/issn/0041414X.
  4. Barton, N., Bandis, S. and Bakhtar, K. (1985), "Strength, deformation and conductivity coupling of rock joints", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 22(3), 121-140. https://doi.org/10.1016/0148-9062(85)93227-9.
  5. Danielsen, S.W. (1971), "Sprekkpermeabilitet(joint permeability)", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim.
  6. Draganovic, A., Karamanoukian, A., Ulriksen, P. and Larsson, S> (2020), "Dispersion of microfine cement grout with ultrasound and conventional laboratory dissolvers", Constr. Build. Mater., 251(10), 1-10. https://doi.org/10.1016/j.conbuildmat.2020.119068..
  7. Gustafson, G. and Stille, H. (1996), "Prediction of groutability from grout properties and hydrogeological data", Tunn. Undergr. Sp. Tech., 11(3), 325-332. https://doi.org/10.1016/0886-7798(96)00027-2.
  8. Huang, S., Pei, Q., Ding, X., Zhang, Y., Liu, D., He, J. and Bian, K. (2020), "Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation", Geomech. Eng., 23(2), 151-163. https://doi.org/10.12989/gae.2020.23.2.151.
  9. Jovicic, V., Coop, M.R. and Simic, M. (1996), "Objective criteria for the determination of rock quality indices using ultrasonic pulse velocity", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 33(3), 319-324.
  10. Jun, Y., Han, L., Meng, Q., Ma, D., Wen, S. and Wang, S. (2018), "Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression", Geomech. Eng., 16(3), 273-284. http://doi.org/10.12989/gae.2018.16.3.273.
  11. Kim, B.K., Lee, I.M., Kim, T.H. and Jung, J.H. (2019), "Groutability enhancement by oscillatory grout injection:Verification by field tests", Geomech. Eng., 18(1), 59-69. https://doi.org/10.12989/gae.2019.18.1.059.
  12. Kim, Y.U., Park, S.H., Moon, J.H. and Jang, S.M. (2013), "Ultrasonically enhanced effectiveness of various surfactants on disel removal from contaminated soil", Jap. J. Appl. Phys., 52(7), 227-228. https://doi.org/10.7567/jjap.52.07he09.
  13. Mazaira, A. and Konicek, P. (2015), "Intense rockburst impacts in deep underground construction and their prevention", Can. Geotech. J., 52(10), 1426-1439. https://doi.org/10.1139/cgj-2014-0359.
  14. Mitchel, J.K. (1970), "In Place treatment of foundation soils, proceeding of soil mechanics and foundation engineering", J. Soil Mech. Found. Division, 96(1). https://doi.org/10.1061/JSFEAQ.0001391.
  15. Mollamahmutoglu, M. and Yilmaz, Y. (2011), "Engineering properties of medium-to-fine sands injected with microfine cement grout", Mar. Georesour. Geotechno., 29(2), 95-109. https://doi.org/10.1080/1064119X.2010.517715.
  16. Moon, J.H., Xin, Z.H., Park, Y.B. and Kim, Y.U. (2019), "Ultrasonically enhanced physical properties of milky cement for ground improvement", KSCE J. Civil Eng., 23(10), 4525-4528. https://doi.org/10.1007/s12205-019-2357-3.
  17. Moon, J.H., Zhenhua, X., Jeong, G.B. and Kim, Y.U. (2017), "Application of ultrasonic energy to enhance capability of soil improving material", J. Korean Tunn. Undergr. Sp. Association, 19(4), 567-576. https://doi.org/10.9711/KTAJ.2017.19.4.567.
  18. Na, S.M., Kim, Y.U., Jang, M., Son, Y.G., Lim, M.H. and Khim, J.Y. (2014), "An economic assessment of the enhanced dewaterability of municipal wastewater sludge following ultrasonic treatment", Jap. J. Appl. Phys., 53(7). https://doi.org/10.7567/jjap.53.07ke11.
  19. Nonveiller, E. (1989), Grouting Theory and Practice, Science, Amsterdam, Netherlands.
  20. Park, J. and Lee, J.S. (2016), "Ultrasonic monitoring of unsaturated soil behavior under cyclic loading", Geotech. Test. J., 39(4), 579-592.
  21. Park, J., Chun, Y.W., Trung, H.T. and Kim, Y.U. (2014), "Effect of ultrasonic energy on self-weight consolidation of clay minerals", KSCE J. Civil Eng., 18(4), 971-974. https://doi.org/10.1007/s12205-014-0375-8.
  22. Peng, J., Hu, X., Chen, C. and Liu, S. (2019), "Application of ultrasonic and electrical resistivity methods for the evaluation of the internal structure of ground improvement by jet grouting", Appl. Sci., 9(6), 1236.
  23. Sharp, JC. (1970), "Fluid flow through fissured media.", Ph.D. Dissertation, University of London, London.
  24. Shen, S.L. and Miura, N. (1999), "Ultrasonic velocity testing of the cementation effect on soil and rock", Geotech. Test. J., 22(1), 83-90.
  25. Shin, J.H., Moon, J.H., Song, Y.K. and Kim, Y.G. (2015), "Ultrasonically enhanced physical properties of cement grout", KSCE J. Civil Eng., 19(6), 1693-1696. https://doi.org/10.1007/s12205-015-1267-2.
  26. Warner, J. (2003), "Soil Solidification with Ultrafine Cement Grout", In Grouting and Ground Treatment, 1360-1371. https://doi.org/10.1061/40663(2003)82.
  27. Xiao, F., Liu, Q. and Zhao, Z. (2021), "Information and knowledge behind data from underground rock grouting", J. Rock Mech. Geotech. Eng., 13(6), 1326-1339. https://doi.org/10.1016/j.jrmge.2021.06.013.
  28. Yaghoobi Rafi, J. (2013), "Design approaches for grouting of rock fractures; Theory and practice", Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm.
  29. Zhang, J., Wang, X., Jin, B., Zhang, X., Li, Z. and Guan, X. (2022), "Effect and mechanism of superplasticizers on performance of ultrafine sulfoaluminate cement-based grouting materials", Adv. Mater. Sci. Eng., 2022(2), 1-11. https://doi.org/10.1155/2022/3836517.
  30. Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.