References
- Abdelmawla A. and Kim, S.S. (2020), "Application of ground penetrating radar to estimate subgrade soil density", Infrastruct., 5(2), 12. https://doi.org/10.3390/infrastructures5020012.
- Al-Nuaimy W., Huang, Y., Nakhkash, M., Fang, M.T.C., Nguyen, V.T. and Eriksen, A. (2000), "Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition", J. Appl. Geophys., 43(2-4), 157-165. https://doi.org/10.1016/S0926-9851(99)00055-5.
- Amaghani, D., Mamou, A., Maraveas, C., Roussis, P., Siorikis, V., Skentou, A. and Asteris, P. (2021). "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
- Benedetto A. and Pensa, S. (2007), "Indirect diagnosis of pavement structural damages using surface GPR reflection techniques", J. Appl. Geophys., 62(2), 107-123. https://doi.org/10.1016/j.jappgeo.2006.09.001.
- Chen S., Wang, H., Xu, F. and Jin, Y.Q. (2016), "Target classification using the deep convolutional networks for SAR images", IEEE T. Geosci. Remote Sens., 54(8), 4806-4817. https://doi.org/10.1109/TGRS.2016.2551720.
- Diamanti N., Redman, D. and Giannopoulos, A. (2010), "A study of GPR vertical crack responses in pavement using field data and numerical modelling", Proceedings of the XIII International Conference on Ground Penetrating Radar, Castello Carlo V, Lecce, Italy, June.
- Ding J., Chen, B., Liu, H. and Huang, M. (2016), "Convolutional neural network with data augmentation for SAR target recognition", IEEE Geosci. Remote Sens. Lett., 13(3), 364-368. https://doi.org/10.1109/LGRS.2015.2513754.
- Gamba P. and Lossani, S. (2000), "Neural detection of pipe signatures in ground penetrating radar images", IEEE T. Geosci. Remote Sens., 38(2), 790-797. https://doi.org/10.1109/36.842008.
- Girshick R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, June.
- Goodfellow I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial networks", arXiv:1406.2661.
- Karras T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J. and Aila, T. (2020), "Training generative adversarial networks with limited data", arXiv:2006.06676.
- Karras T., Aittala, M., Laine, S., Harkonen, E., Hellsten, J., Lehtinen, J. and Aila, T. (2021), "Alias-free generative adversarial networks", arXiv:2106.12423
- Karras T., Laine, S. and Aila, T. (2018), "A style-based generator architecture for generative adversarial networks.", arXiv:1812.04948.
- Kingma D.P. and Welling, M. (2013), "Auto-encoding variational bayes", arXiv preprint arXiv:13126114.
- Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence", Geomech. Eng., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.3.285.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proc. Advances in Neural Information Processing Systems, 25, 1090-1098.
- Kwon, S.Y., Yoo, M. and Hong, S. (2020), "Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation", Geomech. Eng., 21(2), 143-152. https://doi.org/10.12989/gae.2020.21.2.143.
- Lee, K.H., Park, J.H., Park, J., Lee, I.M. and Lee, S.W. (2022), "Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography", Geomech. Eng., 20(6), 475-484. https://doi.org/10.12989/gae.2020.20.6.475.
- Li, J., Gu, J., Huang, Z. and Wen, J. (2019), "Application research of improved YOLO V3 algorithm in PCB electronic component detection.", Appl. Sci., 9, 3750.
- Mirza M. and Osindero, S. (2014), "Conditional generative adversarial nets", arXiv:1411.1784.
- Saarenketo T. and Scullion, T. (2000), "Road evaluation with ground penetrating radar", J. Appl. Geophys., 43(2-4), 119-138. https://doi.org/10.1016/S0926-9851(99)00052-X.
- Shaw, M.R., Millard, S.G., Molyneaux, T.C.K., Taylor, M.J. and Bungey, J.H. (2005), "Location of steel reinforcement in concrete using ground penetrating radar and neural networks", NDT & E Int., 38(3), 203-212. https://doi.org/10.1016/j.ndteint.2004.06.011.
- Sudyka J., Krysinski, L., Zofka, A., Mechowski, T. and Harasim, P. (2018), "Identification of deep-rooted transverse cracks using Ground Penetrating Radar", IOP Conf. Ser.: Mater. Sci. Eng., 356, 012022.
- Wang, C.Y., Yeh, I.H. and Liao, H.Y.M. (2021), "You only learn one representation: Unified network for multiple tasks", arXiv preprint arXiv:2105.04206.