DOI QR코드

DOI QR Code

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham (Department of Civil and Environmental Engineering, University of California Davis) ;
  • Min-Kyung Jeon (CO2 Geological Storage Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Tae-Hyuk Kwon (Department of Civil Engineering, Korea Advanced Institute for Science and Technology)
  • 투고 : 2022.11.29
  • 심사 : 2023.03.21
  • 발행 : 2023.04.25

초록

Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

키워드

과제정보

This paper was supported by "Ministry of the Interior and Safety" R&D program (20018265), and also supported by the Korea Electric Power Corporation (Grant R22XO05-11).

참고문헌

  1. Ahn, T., Cho, S. and Yang, S. (2002), "Stabilization of soil slope using geosynthetic mulching mat", Geotext. Geomembranes, 20(2), 135-146. https://doi.org/10.1016/S0266-1144(02)00002-X.
  2. Arulanandan, K. and Perry, E. (1983), "Erosion in relation to filter design criteria in Earth Dams", J. Geotech. Eng., 109(5), 682-698. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(682).
  3. Bang, S., Min, S. and Bang, S. (2011), "Application of microbiologically induced soil stabilization technique for dust suppression", Int. J. Geo-Eng., 3(2), 27-37.
  4. Barthel, E. (2008), "Adhesive elastic contacts: JKR and more", J. Phys. D: Appl. Phys., 41(16), 163001. 10.1088/0022-3727/41/16/163001.
  5. Basha, E., Hashim, R., Mahmud, H. and Muntohar, A. (2005), "Stabilization of residual soil with rice husk ash and cement", Constr. Build. Mater., 19(6), 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
  6. Briaud, J., Ting, F., Chen, H., Cao, Y., Han, S. and Kwak, K. (2001), "Erosion function apparatus for scour rate predictions", J. Geotech. Geoenviron. Eng., 127(2), 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105).
  7. Briaud, J., Ting, F., Chen, H., Gudavalli, R., Perugu, S. and Wei, G. (1999), "SRICOS: Prediction of scour rate in cohesive soils at bridge piers", J. Geotech. Geoenviron. Eng., 125(4), 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237).
  8. Chhun, K.T., Choo, H., Kaothon, P. and Yune, C.Y. (2020), "Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black", Geomech. Eng., 23(1), 31-38. https://doi.org/10.12989/gae.2020.23.1.031.
  9. Chiew, Y. (1992), "Scour protection at bridge piers", J. Hydraulic Eng., 118(9), 1260-1269. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1260).
  10. De Falco, F. and Mele, R. (2002), "The monitoring of bridges for scour by sonar and sedimetri", NDT & E Int., 35(2), 117-123. https://doi.org/10.1016/S0963-8695(01)00031-7.
  11. DeJong, J.T., Gomez, M.G., San Pablo, A.C., Graddy, C.M.R., Nelson, D.C., Lee, M., Ziotopoulou, K., El Kortbawi, M., Montoya, B. and Kwon, T.H. (2022), "State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation", Proceedings of the 20th ICSMGE-State of the Art and Invited Lectures, Sydney, Australia, May.
  12. Di Felice, R. (1994), "The voidage function for fluid-particle interaction systems", Int. J. Multiphase Flow, 20(1), 153-159. https://doi.org/10.1016/0301-9322(94)90011-6.
  13. Do, J., Montoya, B.M. and Gabr, M.A. (2019), "Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion", Geomech. Eng., 17(5), 429-438. https://doi.org/10.12989/gae.2019.17.5.429.
  14. Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
  15. Ham, S.M., Kwon, T.H., Chang, I. and Chung, M.K. (2016) "Ultrasonic p-wave reflection monitoring of soil erosion for erosion function apparatus", Geotech. Test. J., 39(2), 301-314. https://doi.org/10.1520/GTJ20150040.
  16. Ham, S.M., Martinez, A., Han, G. and Kwon, T.H. (2022), "Grain-scale tensile and shear strengths of glass beads cemented by MICP", J. Geotech. Geoenviron. Eng., 148(9), 04022068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002863.
  17. Hanson, G.J. and Cook, K.R. (2004), "Apparatus, test procedures, and analytical methods to measure soil erodibility in situ", Appl. Eng. Agriculture, 20(4), 455-462. https://doi.org/10.13031/2013.16492.
  18. Harkes, M., Van Paassen, L., Booster, J., Whiffin, V. and van Loosdrecht, M. (2010), "Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement", Ecol. Eng., 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
  19. He, J., Fang, C., Hang, L., Qi, Y., Mao, X., Yan, B., Zhou , Y. and Gao, Y. (2021), "Enzyme induced carbonate precipitation for soil internal erosion control under water seepage", Geomech. Eng., 26(3), 289-299. https://doi.org/10.12989/gae.2021.26.3.289.
  20. Heidarpour, M., Afzalimehr, H. and Izadinia, E. (2010), "Reduction of local scour around bridge pier groups using collars", Int. J. Sediment Res., 25(4), 411-422. https://doi.org/10.1016/S1001-6279(11)60008-5.
  21. Jacobs, W., Le Hir, P., Van Kesteren, W. and Cann, P. (2011), "Erosion threshold of sand-mud mixtures", Continental Shelf Res., 31(10), S14-S25. https://doi.org/10.1016/j.csr.2010.05.012.
  22. Jiang, N. and Soga, K. (2017), "The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures", Geotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182.
  23. Kwon, Y.M., Cho, G.C., Chung, M.K. and Chang, I. (2021), "Surface erosion behavior of biopolymer-treated river sand", Geomech. Eng., 25(1), 49-58. https://doi.org/10.12989/gae.2021.25.1.049.
  24. Melville, B. and Coleman, S. (2000), Bridge Scour, Water Resources Publication, Colorado, USA.
  25. Montoya, B.M., Do, J. and Gabr, M.M. (2018), "Erodibility of microbial induced carbonate precipitation-stabilized sand under submerged impinging jet", Proceedings of the International Foundation Congress and Equipment Expo, Orlando, Florida, USA, March. https://doi.org/10.1061/9780784481592.003.
  26. Moody, L.F. (1944), "Friction factors for pipe flow", Transactions of the American Society of Mechanical Engineers, 66(8), 671-684. https://doi.org/10.1115/1.4018140
  27. Prendergast, L.J. and Gavin, K. (2014), "A review of bridge scour monitoring techniques", J. Rock Mech. Geotech. Eng., 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.
  28. Vick, D. (1984), "Concrete revetment mat systems for Shore erosion control on offshore embankments", Proceedings of the Annual Offshore Technology Conference, Houston, Texas, USA, May. https://doi.org/10.4043/4673-MS.
  29. Wan, C. and Fell, R. (2004), "Laboratory tests on the rate of piping erosion of soils in embankment dams", Geotech. Test. J., 27(3), 295-303. https://doi.org/10.1520/GTJ11903.
  30. Whiffin, V., van Paassen, L. and Harkes, M. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
  31. Yu, T. (2021), "Review on engineering properties of MICP-treated soils", Geomech. Eng., 27(1), 13-30. https://doi.org/10.12989/gae.2021.27.1.013.