DOI QR코드

DOI QR Code

Expanding roles of centrosome abnormalities in cancers

  • Soohyun Song (Department of Life Science, Ewha Womans University) ;
  • Surim Jung (Department of Life Science, Ewha Womans University) ;
  • Mijung Kwon (Department of Life Science, Ewha Womans University)
  • Received : 2023.02.10
  • Accepted : 2023.03.22
  • Published : 2023.04.30

Abstract

Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea Grants (No. NRF-2021R1A2C1007874, No. NRF-2019R1A5A6099645 and No. NRF-2022M3H9A2083956).

References

  1. Conduit PT, Wainman A and Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16, 611-624 https://doi.org/10.1038/nrm4062
  2. Gonczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15, 639-652 https://doi.org/10.1038/nrc3995
  3. Nigg EA and Holland AJ (2018) Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19, 297-312 https://doi.org/10.1038/nrm.2017.127
  4. Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119, 2717-2723 https://doi.org/10.1002/ijc.22245
  5. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7, 1122-1144 https://doi.org/10.7150/ijbs.7.1122
  6. Marteil G, Guerrero A, Vieira AF et al (2018) Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 9, 1258
  7. Kramer A, Neben K and Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29, 375-383 https://doi.org/10.1016/j.cellbi.2005.03.004
  8. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2, 815-825 https://doi.org/10.1038/nrc924
  9. Galeotti G (1893) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol Anat Allg Pathol 14, 249-271
  10. Hardy P (2005) Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int 29, 983-992 https://doi.org/10.1016/j.cellbi.2005.10.001
  11. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121, 1-84 https://doi.org/10.1242/jcs.025742
  12. Godinho SA and Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369, 20130467
  13. Pihan GA, Wallace J, Zhou YN and Doxsey SJ (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63, 1398-1404
  14. Schnerch D and Nigg EA (2016) Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 35, 2711-2722 https://doi.org/10.1038/onc.2015.332
  15. Ogden A, Rida PC and Aneja R (2017) Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 7, 262
  16. de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M and Barbosa-Morais NL (2019) Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 15, e1006832
  17. Morretton JP, Simon A, Herbette A et al (2022) A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med 14, e15670
  18. Shin B, Kim MS, Lee Y, Jung GI and Rhee K (2021) Generation and fates of supernumerary centrioles in dividing cells. Mol Cells 44, 699-705 https://doi.org/10.14348/molcells.2021.0220
  19. Habedanck R, Stierhof YD, Wilkinson CJ and Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7, 1140-1146 https://doi.org/10.1038/ncb1320
  20. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD and Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13, 190-202 https://doi.org/10.1016/j.devcel.2007.07.002
  21. Liao Z, Zhang H, Fan P et al (2019) High PLK4 expression promotes tumor progression and induces epithelial-mesenchymal transition by regulating the Wnt/beta-catenin signaling pathway in colorectal cancer. Int J Oncol 54, 479-490 https://doi.org/10.3892/ijo.2018.4659
  22. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15, 2199-2207 https://doi.org/10.1016/j.cub.2005.11.042
  23. Basto R, Brunk K, Vinadogrova T et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 https://doi.org/10.1016/j.cell.2008.05.039
  24. Cunha-Ferreira I, Rodrigues-Martins A, Bento I et al (2009) The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19, 43-49 https://doi.org/10.1016/j.cub.2008.11.037
  25. Holland AJ, Lan W, Niessen S, Hoover H and Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188, 191-198 https://doi.org/10.1083/jcb.200911102
  26. Rogers GC, Rusan NM, Roberts DM, Peifer M and Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184, 225-239 https://doi.org/10.1083/jcb.200808049
  27. Sillibourne JE, Tack F, Vloemans N et al (2010) Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 21, 547-561 https://doi.org/10.1091/mbc.e09-06-0505
  28. Guderian G, Westendorf J, Uldschmid A and Nigg EA (2010) Plk4 trans-autophosphorylation regulates centriole number by controlling beta TrCP-mediated degradation. J Cell Sci 123, 2163-2169 https://doi.org/10.1242/jcs.068502
  29. Loncarek J, Hergert P and Khodjakov A (2010) Centriole reduplication during prolonged interphase requires pro-centriole maturation governed by Plk1. Curr Biol 20, 1277-1282 https://doi.org/10.1016/j.cub.2010.05.050
  30. Shukla A, Kong D, Sharma M, Magidson V and Loncarek J (2015) Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun 6, 8077
  31. Inanc B, Dodson H and Morrison CG (2010) A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 21, 3866-3877 https://doi.org/10.1091/mbc.e10-02-0124
  32. Douthwright S and Sluder G (2014) Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 229, 1427-1436 https://doi.org/10.1002/jcp.24579
  33. Sabino D, Gogendeau D, Gambarotto D et al (2015) Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 25, 879-889 https://doi.org/10.1016/j.cub.2015.01.066
  34. Castellanos E, Dominguez P and Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18, 1209-1214 https://doi.org/10.1016/j.cub.2008.07.029
  35. Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P and Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15, 731-740 https://doi.org/10.1038/ncb2746
  36. Vitre B, Holland AJ, Kulukian A et al (2015) Chronic centrosome amplification without tumorigenesis. Proc Natl Acad Sci U S A 112, 6321-6330 https://doi.org/10.1073/pnas.1519388112
  37. Kulukian A, Holland AJ, Vitre B, Naik S, Cleveland DW and Fuchs E (2015) Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc Natl Acad Sci U S A 112, 6311-6320 https://doi.org/10.1073/pnas.1518376112
  38. Sercin O, Larsimont JC, Karambelas AE et al (2016) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18, 100-110 https://doi.org/10.1038/ncb3270
  39. Coelho PA, Bury L, Shahbazi MN et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5, 510209
  40. Levine MS, Bakker B, Boeckx B et al (2017) Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 40, 313-322 https://doi.org/10.1016/j.devcel.2016.12.022
  41. Godinho SA, Kwon M and Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28, 85-98 https://doi.org/10.1007/s10555-008-9163-6
  42. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM and Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127-129 https://doi.org/10.1126/science.1104905
  43. Kwon M, Godinho SA, Chandhok NS et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22, 2189-2203 https://doi.org/10.1101/gad.1700908
  44. Leber B, Maier B, Fuchs F et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2, 33ra38
  45. Ganem NJ, Godinho SA and Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 https://doi.org/10.1038/nature08136
  46. Silkworth WT, Nardi IK, Scholl LM and Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. Plos One 4, e6564
  47. Liu S, Kwon M, Mannino M et al (2018) Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551-555 https://doi.org/10.1038/s41586-018-0534-z
  48. Kwon M, Leibowitz ML and Lee JH (2020) Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 52, 1777-1786 https://doi.org/10.1038/s12276-020-00529-z
  49. Hatch EM, Fischer AH, Deerinck TJ and Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47-60 https://doi.org/10.1016/j.cell.2013.06.007
  50. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53-58 https://doi.org/10.1038/nature10802
  51. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522, 179-184 https://doi.org/10.1038/nature14493
  52. Janssen A, van der Burg M, Szuhai K, Kops G and Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895-1898 https://doi.org/10.1126/science.1210214
  53. Lambert AW, Pattabiraman DR and Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168, 670- 691 https://doi.org/10.1016/j.cell.2016.11.037
  54. Godinho SA, Picone R, Burute M et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167-171 https://doi.org/10.1038/nature13277
  55. Bid HK, Roberts RD, Manchanda PK and Houghton PJ (2013) RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 12, 1925-1934 https://doi.org/10.1158/1535-7163.MCT-13-0164
  56. Mack NA, Whalley HJ, Castillo-Lluva S and Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10, 1571-1581 https://doi.org/10.4161/cc.10.10.15612
  57. Arnandis T, Monteiro P, Adams SD et al (2018) Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev Cell 47, 409-424 https://doi.org/10.1016/j.devcel.2018.10.026
  58. Adams SD, Csere J, D'Angelo G et al (2021) Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr Biol 31, 1403-1416 e1407
  59. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H and Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836-848 https://doi.org/10.1016/j.ccell.2016.10.009
  60. van Niel G, D'Angelo G and Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213-228 https://doi.org/10.1038/nrm.2017.125
  61. Ganier O, Schnerch D, Oertle P, Lim RYH, Plodinec M and Nigg EA (2018) Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 37, e98576
  62. Ganier O, Schnerch D and Nigg EA (2018) Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion. Open Biol 8, 180044
  63. Yu LL, Song YM, Zhang QH and Zhan QM (2009) Ninein-like protein is overexpressed in head and neck squamous cell carcinoma and contributes to cancer growth and resistance to apoptosis. Oncol Rep 22, 789-798
  64. Qu D, Qu HY, Fu M et al (2008) Increased expression of Nlp, a potential oncogene in ovarian cancer, and its implication in carcinogenesis. Gynecol Oncol 110, 230-236 https://doi.org/10.1016/j.ygyno.2008.04.015
  65. Shao S, Liu R, Wang Y et al (2010) Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 120, 498-507 https://doi.org/10.1172/JCI39447
  66. Slattum GM and Rosenblatt J (2014) Tumour cell invasion: an emerging role for basal epithelial cell extrusion. Nat Rev Cancer 14, 495-501 https://doi.org/10.1038/nrc3767
  67. Ohsawa S, Vaughen J and Igaki T (2018) Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev Cell 44, 284-296 https://doi.org/10.1016/j.devcel.2018.01.009
  68. Gu YP, Shea J, Slattum G et al (2015) Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4, e04069
  69. Bazzi H and Anderson KV (2014) Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 111, 1491-1500 https://doi.org/10.1073/pnas.1323535111
  70. Lambrus BG, Uetake Y, Clutario KM et al (2015) p53 protects against genome instability following centriole duplication failure. J Cell Biol 210, 63-77 https://doi.org/10.1083/jcb.201502089
  71. Wong YL, Anzola JV, Davis RL et al (2015) Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 https://doi.org/10.1126/science.aaa5111
  72. Fong CS, Mazo G, Das T et al (2016) 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5, e16270
  73. Lambrus BG, Daggubati V, Uetake Y et al (2016) A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J Cell Biol 214, 143-153 https://doi.org/10.1083/jcb.201604054
  74. Meitinger F, Anzola JV, Kaulich M et al (2016) 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol 214, 155-166 https://doi.org/10.1083/jcb.201604081
  75. Lambrus BG and Holland AJ (2017) A new mode of mitotic surveillance. Trends Cell Biol 27, 314-321 https://doi.org/10.1016/j.tcb.2017.01.004
  76. Uetake Y and Sluder G (2010) Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 20, 1666-1671 https://doi.org/10.1016/j.cub.2010.08.018
  77. Contadini C, Monteonofrio L, Virdia I et al (2019) p53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death Dis 10, 850
  78. Holland AJ, Fachinetti D, Zhu Q et al (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26, 2684-2689 https://doi.org/10.1101/gad.207027.112
  79. Ganem NJ, Cornils H, Chiu SY et al (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 https://doi.org/10.1016/j.cell.2014.06.029
  80. Fava LL, Schuler F, Sladky V et al (2017) The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 31, 34-45 https://doi.org/10.1101/gad.289728.116
  81. Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J and Holland AJ (2021) ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 40, e105106
  82. Burigotto M, Mattivi A, Migliorati D et al (2021) Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J 40, e104844
  83. Zhang D, Zaugg K, Mak TW and Elledge SJ (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529-542 https://doi.org/10.1016/j.cell.2006.06.039
  84. Iwabuchi K, Bartel PL, Li B, Marraccino R and Fields S (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A 91, 6098-6102 https://doi.org/10.1073/pnas.91.13.6098
  85. Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H and Oren M (2006) A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20, 2687-2700 https://doi.org/10.1101/gad.1447006
  86. Tinel A and Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843-846 https://doi.org/10.1126/science.1095432
  87. Oliver TG, Meylan E, Chang GP et al (2011) Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 43, 57-71 https://doi.org/10.1016/j.molcel.2011.06.012