DOI QR코드

DOI QR Code

Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study

  • Kai Dong (School and Hospital of Stomatology, Shandong University) ;
  • Wen-Juan Zhou (Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College) ;
  • Zhong-Hao Liu (School and Hospital of Stomatology, Shandong University)
  • Received : 2021.11.29
  • Accepted : 2022.07.05
  • Published : 2023.02.28

Abstract

Purpose: The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. Methods: BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 µM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 µM, ROS scavenger) group, (4) the drBMSCs + MF (200 µM) group, and (5) the drBMSCs + MF (200 µM) + H2O2 (50 µM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. Results: MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. Conclusions: MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.

Keywords

Acknowledgement

This study was supported by the Science and Technology Plan Project of Yantai (No. 2020MSGY082).

References

  1. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021;44:S15-33. https://doi.org/10.2337/dc21-S002
  2. Alasqah MN, Alrabiah M, Al-Aali KA, Mokeem SA, Binmahfooz AM, ArRejaie AS, et al. Peri-implant soft tissue status and crestal bone levels around adjacent implants placed in patients with and without type-2 diabetes mellitus: 6 years follow-up results. Clin Implant Dent Relat Res 2018;20:562-8. https://doi.org/10.1111/cid.12617
  3. Wang X, Wang H, Zhang T, Cai L, Kong C, He J. Current knowledge regarding the interaction between oral bone metabolic disorders and diabetes mellitus. Front Endocrinol (Lausanne) 2020;11:536.
  4. Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 2015;7:63-72.
  5. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017;3:23.
  6. Proussaefs P, Lozada J. The use of intraorally harvested autogenous block grafts for vertical alveolar ridge augmentation: a human study. Int J Periodontics Restorative Dent 2005;25:351-63.
  7. Sakkas A, Schramm A, Karsten W, Gellrich NC, Wilde F. A clinical study of the outcomes and complications associated with zygomatic buttress block bone graft for limited preimplant augmentation procedures. J Craniomaxillofac Surg 2016;44:249-56. https://doi.org/10.1016/j.jcms.2015.12.003
  8. Ladha K, Sharma A, Tiwari B, Bukya DN. Bone augmentation as an adjunct to dental implant rehabilitation in patients with diabetes mellitus: a review of literature. Natl J Maxillofac Surg 2017;8:95-101. https://doi.org/10.4103/njms.NJMS_16_17
  9. Gjerde C, Mustafa K, Hellem S, Rojewski M, Gjengedal H, Yassin MA, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 2018;9:213.
  10. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4:743-65. https://doi.org/10.1002/mabi.200400026
  11. Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016;2016:6180487.
  12. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. https://doi.org/10.1126/science.284.5411.143
  13. Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W, et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther 2017;8:275.
  14. Colombo JS, Balani D, Sloan AJ, Crean SJ, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats. Clin Oral Implants Res 2011;22:578-86. https://doi.org/10.1111/j.1600-0501.2010.01992.x
  15. Olekson MP, Faulknor RA, Hsia HC, Schmidt AM, Berthiaume F. Soluble receptor for advanced glycation end products improves stromal cell-derived factor-1 activity in model diabetic environments. Adv Wound Care (New Rochelle) 2016;5:527-38. https://doi.org/10.1089/wound.2015.0674
  16. Piscitelli P, Neglia C, Vigilanza A, Colao A. Diabetes and bone: biological and environmental factors. Curr Opin Endocrinol Diabetes Obes 2015;22:439-45. https://doi.org/10.1097/MED.0000000000000203
  17. Qiu X, Wang X, Qiu J, Zhu Y, Liang T, Gao B, et al. Melatonin rescued reactive oxygen species-impaired osteogenesis of human bone marrow mesenchymal stem cells in the presence of tumor necrosis factor-alpha. Stem Cells Int 2019;2019:6403967.
  18. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne) 2020;11:191.
  19. Shaik AR, Singh P, Shaik C, Kohli S, Vohora D, Ferrari SL. Metformin: Is It the well wisher of bone beyond glycemic control in diabetes mellitus? Calcif Tissue Int 2021;108:693-707. https://doi.org/10.1007/s00223-021-00805-8
  20. Lin J, Xu R, Shen X, Jiang H, Du S. Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation. Biochem Biophys Res Commun 2020;531:228-35. https://doi.org/10.1016/j.bbrc.2020.06.146
  21. Sun R, Liang C, Sun Y, Xu Y, Geng W, Li J. Effects of metformin on the osteogenesis of alveolar BMSCs from diabetic patients and implant osseointegration in rats. Oral Dis 2022;28:1170-80. https://doi.org/10.1111/odi.13808
  22. Aung M, Amin S, Gulraiz A, Gandhi FR, Pena Escobar JA, Malik BH. The future of metformin in the prevention of diabetes-related osteoporosis. Cureus 2020;12:e10412.
  23. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000;49:1390-4. https://doi.org/10.1053/meta.2000.17721
  24. Yin D, Komasa S, Yoshimine S, Sekino T, Okazaki J. Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int J Nanomedicine 2019;14:3831-43. https://doi.org/10.2147/IJN.S206313
  25. Qiao Q, Xu X, Song Y, Song S, Zhu W, Li F. Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 2018;49:369-76. https://doi.org/10.1007/s10735-018-9776-1
  26. Pallag A, Filip GA, Olteanu D, Clichici S, Baldea I, Jurca T, et al. Equisetum arvense L. extract induces antibacterial activity and modulates oxidative stress, inflammation, and apoptosis in endothelial vascular cells exposed to hyperosmotic stress. Oxid Med Cell Longev 2018;2018:3060525.
  27. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401-26. https://doi.org/10.1146/annurev-pharmtox-011112-140320
  28. Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, et al. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34:2234-43. https://doi.org/10.1016/j.biomaterials.2012.12.023
  29. Ait-Aissa K, Blaszak SC, Beutner G, Tsaih SW, Morgan G, Santos JH, et al. Mitochondrial oxidative phosphorylation defect in the heart of subjects with coronary artery disease. Sci Rep 2019;9:7623.
  30. Hu XF, Wang L, Lu YZ, Xiang G, Wu ZX, Yan YB, et al. Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro. Acta Biomater 2017;61:233-48. https://doi.org/10.1016/j.actbio.2017.06.020
  31. Gan X, Huang S, Liu Y, Yan SS, Yu H. The potential role of damage-associated molecular patterns derived from mitochondria in osteocyte apoptosis and bone remodeling. Bone 2014;62:67-8. https://doi.org/10.1016/j.bone.2014.01.018
  32. Zheng J, Xie SH, Santoni G, Lagergren J. Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort study. Br J Cancer 2019;121:877-82. https://doi.org/10.1038/s41416-019-0598-z
  33. Bahrambeigi S, Yousefi B, Rahimi M, Shafiei-Irannejad V. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother 2019;109:1593-601. https://doi.org/10.1016/j.biopha.2018.11.032
  34. Nguyen C, Pandey S. Exploiting mitochondrial vulnerabilities to trigger apoptosis selectively in cancer cells. Cancers (Basel) 2019;11:916.
  35. Gao Y, Xue J, Li X, Jia Y, Hu J. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol 2008;60:1695-700. https://doi.org/10.1211/jpp.60.12.0017
  36. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 2010;24:334-44. https://doi.org/10.1016/j.jdiacomp.2009.05.002
  37. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab 2020;32:15-30. https://doi.org/10.1016/j.cmet.2020.04.001