DOI QR코드

DOI QR Code

Emerging Role of NRF2 Signaling in Cancer Stem Cell Phenotype

  • Steffanus P. Hallis (Department of Pharmacy, Graduate School, The Catholic University of Korea) ;
  • Jin Myung Kim (Department of Pharmacy, Graduate School, The Catholic University of Korea) ;
  • Mi-Kyoung Kwak (Department of Pharmacy, Graduate School, The Catholic University of Korea)
  • Received : 2022.12.28
  • Accepted : 2023.02.09
  • Published : 2023.03.31

Abstract

Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2022R1A2C2011866, 2018R1A6A1A03025108). This study was also supported by The Catholic University of Korea, Research Fund 2021.

References

  1. Arfmann-Knubel, S., Struck, B., Genrich, G., Helm, O., Sipos, B., Sebens, S., and Schafer, H. (2015). The crosstalk between Nrf2 and TGF-β1 in the epithelial-mesenchymal transition of pancreatic duct epithelial cells. PLoS One 10, e0132978.
  2. Baird, L. and Yamamoto, M. (2020). The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol. 40, e00099-20.
  3. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760. https://doi.org/10.1038/nature05236
  4. Batlle, E. and Clevers, H. (2017). Cancer stem cells revisited. Nat. Med. 23, 1124-1134. https://doi.org/10.1038/nm.4409
  5. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84-89. https://doi.org/10.1038/35000034
  6. Bayik, D. and Lathia, J.D. (2021). Cancer stem cell-immune cell crosstalk in tumour progression. Nat. Rev. Cancer 21, 526-536. https://doi.org/10.1038/s41568-021-00366-w
  7. Beck, B., Lapouge, G., Rorive, S., Drogat, B., Desaedelaere, K., Delafaille, S., Dubois, C., Salmon, I., Willekens, K., Marine, J.C., et al. (2015). Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16, 67-79. https://doi.org/10.1016/j.stem.2014.12.002
  8. Best, S.A., De Souza, D.P., Kersbergen, A., Policheni, A.N., Dayalan, S., Tull, D., Rathi, V., Gray, D.H., Ritchie, M.E., McConville, M.J., et al. (2018). Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 27, 935-943.e4. https://doi.org/10.1016/j.cmet.2018.02.006
  9. Bjerkvig, R., Tysnes, B.B., Aboody, K.S., Najbauer, J., and Terzis, A.J. (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5, 899-904. https://doi.org/10.1038/nrc1740
  10. Bocci, F., Tripathi, S.C., Vilchez Mercedes, S.A., George, J.T., Casabar, J.P., Wong, P.K., Hanash, S.M., Levine, H., Onuchic, J.N., and Jolly, M.K. (2019). NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr. Biol. (Camb.) 11, 251-263. https://doi.org/10.1093/intbio/zyz021
  11. Bonnet, D. and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737. https://doi.org/10.1038/nm0797-730
  12. Caramel, J., Papadogeorgakis, E., Hill, L., Browne, G.J., Richard, G., Wierinckx, A., Saldanha, G., Osborne, J., Hutchinson, P., Tse, G., et al. (2013). A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24, 466-480. https://doi.org/10.1016/j.ccr.2013.08.018
  13. Chaffer, C.L., Brueckmann, I., Scheel, C., Kaestli, A.J., Wiggins, P.A., Rodrigues, L.O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. U. S. A. 108, 7950-7955. https://doi.org/10.1073/pnas.1102454108
  14. Chaffer, C.L., Marjanovic, N.D., Lee, T., Bell, G., Kleer, C.G., Reinhardt, F., D'Alessio, A.C., Young, R.A., and Weinberg, R.A. (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61-74. https://doi.org/10.1016/j.cell.2013.06.005
  15. Chang, C.W., Chen, Y.S., Tsay, Y.G., Han, C.L., Chen, Y.J., Yang, C.C., Hung, K.F., Lin, C.H., Huang, T.Y., Kao, S.Y., et al. (2018). ROS-independent ER stress-mediated NRF2 activation promotes warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis. 9, 194.
  16. Chio, I.I.C., Jafarnejad, S.M., Ponz-Sarvise, M., Park, Y., Rivera, K., Palm, W., Wilson, J., Sangar, V., Hao, Y., Ohlund, D., et al. (2016). NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963-976. https://doi.org/10.1016/j.cell.2016.06.056
  17. Cho, H.Y. and Kleeberger, S.R. (2020). Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch. Pharm. Res. 43, 297-320. https://doi.org/10.1007/s12272-019-01182-5
  18. Choi, B.H., Kim, J.M., and Kwak, M.K. (2021). The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch. Pharm. Res. 44, 263-280. https://doi.org/10.1007/s12272-021-01316-8
  19. Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772. https://doi.org/10.1016/j.cell.2011.09.048
  20. Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Wong, H., Rodriguez, A., Herschkowitz, J.I., et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. U. S. A. 106, 13820-13825. https://doi.org/10.1073/pnas.0905718106
  21. Cuadrado, A., Rojo, A.I., Wells, G., Hayes, J.D., Cousin, S.P., Rumsey, W.L., Attucks, O.C., Franklin, S., Levonen, A.L., Kensler, T.W., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295-317. https://doi.org/10.1038/s41573-018-0008-x
  22. Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275-284. https://doi.org/10.1038/nrc1590
  23. Del Vecchio, C.A., Feng, Y., Sokol, E.S., Tillman, E.J., Sanduja, S., Reinhardt, F., and Gupta, P.B. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12, e1001945.
  24. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109. https://doi.org/10.1038/nature10189
  25. Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783. https://doi.org/10.1038/nature07733
  26. Emmink, B.L., Verheem, A., Van Houdt, W.J., Steller, E.J., Govaert, K.M., Pham, T.V., Piersma, S.R., Borel Rinkes, I.H., Jimenez, C.R., and Kranenburg, O. (2013). The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J. Proteomics 91, 84-96. https://doi.org/10.1016/j.jprot.2013.06.027
  27. Escoll, M., Lastra, D., Pajares, M., Robledinos-Anton, N., Rojo, A.I., Fernandez-Gines, R., Mendiola, M., Martinez-Marin, V., Esteban, I., Lopez-Larrubia, P., et al. (2020). Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol. 30, 101425.
  28. Fan, H., Paiboonrungruan, C., Zhang, X., Prigge, J.R., Schmidt, E.E., Sun, Z., and Chen, X. (2017). Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells. Biochem. Biophys. Res. Commun. 493, 833-839. https://doi.org/10.1016/j.bbrc.2017.08.049
  29. Fragoulis, A., Schenkel, J., Schroder, N., Brandt, E.F., Weiand, M., Neu, T., Ramadori, P., Caspers, T., Kant, S., Pufe, T., et al. (2022). Nrf2 induces malignant transformation of hepatic progenitor cells by inducing β-catenin expression. Redox Biol. 57, 102453.
  30. Giancotti, F.G. (2013). Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750-764. https://doi.org/10.1016/j.cell.2013.10.029
  31. Goldstein, L.D., Lee, J., Gnad, F., Klijn, C., Schaub, A., Reeder, J., Daemen, A., Bakalarski, C.E., Holcomb, T., Shames, D.S., et al. (2016). Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 16, 2605-2617. https://doi.org/10.1016/j.celrep.2016.08.010
  32. Goto, S., Kawabata, T., and Li, T.S. (2020). Enhanced expression of ABCB1 and Nrf2 in CD133-positive cancer stem cells associates with doxorubicin resistance. Stem Cells Int. 2020, 8868849.
  33. Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C., and Lander, E.S. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633-644. https://doi.org/10.1016/j.cell.2011.07.026
  34. Gupta, P.B., Pastushenko, I., Skibinski, A., Blanpain, C., and Kuperwasser, C. (2019). Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65-78. https://doi.org/10.1016/j.stem.2018.11.011
  35. Hadnagy, A., Gaboury, L., Beaulieu, R., and Balicki, D. (2006). SP analysis may be used to identify cancer stem cell populations. Exp. Cell Res. 312, 3701-3710. https://doi.org/10.1016/j.yexcr.2006.08.030
  36. Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., and Clarke, R.B. (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709-718. https://doi.org/10.1158/0008-5472.CAN-09-1681
  37. Hayes, J.D. and Dinkova-Kostova, A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218. https://doi.org/10.1016/j.tibs.2014.02.002
  38. Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., Gobel, U., Goodell, M.A., and Brenner, M.K. (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. U. S. A. 101, 14228-14233. https://doi.org/10.1073/pnas.0400067101
  39. Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827-4833. https://doi.org/10.1158/0008-5472.CAN-06-3557
  40. Hu, X., Ghisolfi, L., Keates, A.C., Zhang, J., Xiang, S., Lee, D.K., and Li, C.J. (2012). Induction of cancer cell stemness by chemotherapy. Cell Cycle 11, 2691-2698. https://doi.org/10.4161/cc.21021
  41. Ichimura, Y., Waguri, S., Sou, Y.S., Kageyama, S., Hasegawa, J., Ishimura, R., Saito, T., Yang, Y., Kouno, T., Fukutomi, T., et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618-631. https://doi.org/10.1016/j.molcel.2013.08.003
  42. Islam, S.S., Qassem, K., Islam, S., Parag, R.R., Rahman, M.Z., Farhat, W.A., Yeger, H., Aboussekhra, A., Karakas, B., and Noman, A.S.M. (2022). Genetic alterations of Keap1 confers chemotherapeutic resistance through functional activation of Nrf2 and Notch pathway in head and neck squamous cell carcinoma. Cell Death Dis. 13, 696.
  43. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  44. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., and Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86. https://doi.org/10.1101/gad.13.1.76
  45. Jang, J., Wang, Y., Kim, H.S., Lalli, M.A., and Kosik, K.S. (2014). Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32, 2616-2625. https://doi.org/10.1002/stem.1764
  46. Justilien, V. and Fields, A.P. (2015). Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin. Cancer Res. 21, 505-513. https://doi.org/10.1158/1078-0432.CCR-14-0507
  47. Kahroba, H., Shirmohamadi, M., Hejazi, M.S., and Samadi, N. (2019). The role of Nrf2 signaling in cancer stem cells: from stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci. 239, 116986.
  48. Kakehashi, A., Ishii, N., Sugihara, E., Gi, M., Saya, H., and Wanibuchi, H. (2016). CD44 variant 9 is a potential biomarker of tumor initiating cells predicting survival outcome in hepatitis C virus-positive patients with resected hepatocellular carcinoma. Cancer Sci. 107, 609-618. https://doi.org/10.1111/cas.12908
  49. Kamble, D., Mahajan, M., Dhat, R., and Sitasawad, S. (2021). Keap1-Nrf2 pathway regulates ALDH and contributes to radioresistance in breast cancer stem cells. Cells 10, 83.
  50. Kim, D., Choi, B.H., Ryoo, I.G., and Kwak, M.K. (2018a). High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis. 9, 896.
  51. Kim, D.H., Jang, J.H., Kwon, O.S., Cha, H.J., Youn, H.J., Chun, K.S., and Surh, Y.J. (2020). Nuclear factor erythroid-derived 2-like 2-induced reductive stress favors self-renewal of breast cancer stem-like cells via the FoxO3a-Bmi-1 axis. Antioxid. Redox Signal. 32, 1313-1329. https://doi.org/10.1089/ars.2019.7730
  52. Kim, D.H., Yoon, H.J., Cha, Y.N., and Surh, Y.J. (2018b). Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic. Res. 52, 1336-1347. https://doi.org/10.1080/10715762.2018.1473571
  53. Kim, J.H., Thimmulappa, R.K., Kumar, V., Cui, W., Kumar, S., Kombairaju, P., Zhang, H., Margolick, J., Matsui, W., Macvittie, T., et al. (2014). NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J. Clin. Invest. 124, 730-741. https://doi.org/10.1172/JCI70812
  54. Kim, W.D., Kim, Y.W., Cho, I.J., Lee, C.H., and Kim, S.G. (2012). E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J. Cell Sci. 125, 1284-1295. https://doi.org/10.1242/jcs.095422
  55. Kitamura, H. and Motohashi, H. (2018). NRF2 addiction in cancer cells. Cancer Sci. 109, 900-911. https://doi.org/10.1111/cas.13537
  56. Kitamura, H., Onodera, Y., Murakami, S., Suzuki, T., and Motohashi, H. (2017). IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene 36, 6315-6324. https://doi.org/10.1038/onc.2017.236
  57. Kreso, A., van Galen, P., Pedley, N.M., Lima-Fernandes, E., Frelin, C., Davis, T., Cao, L., Baiazitov, R., Du, W., Sydorenko, N., et al. (2014). Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29-36. https://doi.org/10.1038/nm.3418
  58. Lagadec, C., Vlashi, E., Della Donna, L., Dekmezian, C., and Pajonk, F. (2012). Radiation-induced reprogramming of breast cancer cells. Stem Cells 30, 833-844. https://doi.org/10.1002/stem.1058
  59. Lagadinou, E.D., Sach, A., Callahan, K., Rossi, R.M., Neering, S.J., Minhajuddin, M., Ashton, J.M., Pei, S., Grose, V., and O'Dwyer, K.M. (2013). BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329-341. https://doi.org/10.1016/j.stem.2012.12.013
  60. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648. https://doi.org/10.1038/367645a0
  61. Lee, J.A., Kwon, Y.W., Kim, H.R., Shin, N., Son, H.J., Cheong, C.S., Kim, D.J., and Hwang, O. (2022). A novel pyrazolo[3,4-d]pyrimidine induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects. Mol. Cells 45, 134-147. https://doi.org/10.14348/molcells.2021.0074
  62. Leung, H.W., Lau, E.Y.T., Leung, C.O.N., Lei, M.M.L., Mok, E.H.K., Ma, V.W.S., Cho, W.C.S., Ng, I.O.L., Yun, J.P., Cai, S.H., et al. (2020). NRF2/SHH signaling cascade promotes tumor-initiating cell lineage and drug resistance in hepatocellular carcinoma. Cancer Lett. 476, 48-56. https://doi.org/10.1016/j.canlet.2020.02.008
  63. Li, L., Shen, C., Nakamura, E., Ando, K., Signoretti, S., Beroukhim, R., Cowley, G.S., Lizotte, P., Liberzon, E., Bair, S., et al. (2013). SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. Cancer Cell 24, 738-750. https://doi.org/10.1016/j.ccr.2013.10.025
  64. Li, Y., Li, Y., Yin, J., Wang, C., Yang, M., Gu, J., He, M., Xu, H., Fu, W., Zhang, W., et al. (2021). A mitophagy inhibitor targeting p62 attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Lett. 510, 24-36. https://doi.org/10.1016/j.canlet.2021.04.003
  65. Lytle, N.K., Barber, A.G., and Reya, T. (2018). Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer 18, 669-680. https://doi.org/10.1038/s41568-018-0056-x
  66. Maher, J.M., Dieter, M.Z., Aleksunes, L.M., Slitt, A.L., Guo, G., Tanaka, Y., Scheffer, G.L., Chan, J.Y., Manautou, J.E., Chen, Y., et al. (2007). Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 46, 1597-1610. https://doi.org/10.1002/hep.21831
  67. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
  68. Medema, J.P. (2013). Cancer stem cells: the challenges ahead. Nat. Cell Biol. 15, 338-344. https://doi.org/10.1038/ncb2717
  69. Meyer, M.J., Fleming, J.M., Lin, A.F., Hussnain, S.A., Ginsburg, E., and Vonderhaar, B.K. (2010). CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res. 70, 4624-4633. https://doi.org/10.1158/0008-5472.CAN-09-3619
  70. Mitsuishi, Y., Taguchi, K., Kawatani, Y., Shibata, T., Nukiwa, T., Aburatani, H., Yamamoto, M., and Motohashi, H. (2012). Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66-79. https://doi.org/10.1016/j.ccr.2012.05.016
  71. Murakami, S. and Motohashi, H. (2015). Roles of Nrf2 in cell proliferation and differentiation. Free Radic. Biol. Med. 88(Pt B), 168-178. https://doi.org/10.1016/j.freeradbiomed.2015.06.030
  72. Murakami, S., Ninomiya, W., Sakamoto, E., Shibata, T., Akiyama, H., and Tashiro, F. (2015). SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets. Stem Cells 33, 2652-2663. https://doi.org/10.1002/stem.2059
  73. Naka, K., Hoshii, T., Muraguchi, T., Tadokoro, Y., Ooshio, T., Kondo, Y., Nakao, S., Motoyama, N., and Hirao, A. (2010). TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463, 676-680. https://doi.org/10.1038/nature08734
  74. Nassar, D. and Blanpain, C. (2016). Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11, 47-76. https://doi.org/10.1146/annurev-pathol-012615-044438
  75. Neradil, J. and Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Sci. 106, 803-811. https://doi.org/10.1111/cas.12691
  76. Nguyen, L.V., Vanner, R., Dirks, P., and Eaves, C.J. (2012). Cancer stem cells: an evolving concept. Nat. Rev. Cancer 12, 133-143. https://doi.org/10.1038/nrc3184
  77. Nieto, M.A., Huang, R.Y., Jackson, R.A., and Thiery, J.P. (2016). EMT: 2016. Cell 166, 21-45. https://doi.org/10.1016/j.cell.2016.06.028
  78. Noman, A.S.M., Parag, R.R., Rashid, M.I., Islam, S., Rahman, M.Z., Chowdhury, A.A., Sultana, A., Jerin, C., Siddiqua, A., Rahman, L., et al. (2020). Chemotherapeutic resistance of head and neck squamous cell carcinoma is mediated by EpCAM induction driven by IL-6/p62 associated Nrf2-antioxidant pathway activation. Cell Death Dis. 11, 663.
  79. Okazaki, K., Anzawa, H., Katsuoka, F., Kinoshita, K., Sekine, H., and Motohashi, H. (2022). CEBPB is required for NRF2-mediated drug resistance in NRF2-activated non-small cell lung cancer cells. J. Biochem. 171, 567-578. https://doi.org/10.1093/jb/mvac013
  80. Okazaki, K., Anzawa, H., Liu, Z., Ota, N., Kitamura, H., Onodera, Y., Alam, M.M., Matsumaru, D., Suzuki, T., Katsuoka, F., et al. (2020a). Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers. Nat. Commun. 11, 5911.
  81. Okazaki, K., Papagiannakopoulos, T., and Motohashi, H. (2020b). Metabolic features of cancer cells in NRF2 addiction status. Biophys. Rev. 12, 435-441. https://doi.org/10.1007/s12551-020-00659-8
  82. Oshimori, N., Oristian, D., and Fuchs, E. (2015). TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963-976. https://doi.org/10.1016/j.cell.2015.01.043
  83. Panieri, E., Buha, A., Telkoparan-Akillilar, P., Cevik, D., Kouretas, D., Veskoukis, A., Skaperda, Z., Tsatsakis, A., Wallace, D., Suzen, S., et al. (2020). Potential applications of NRF2 modulators in cancer therapy. Antioxidants (Basel) 9, 193.
  84. Park, J., Kim, S.K., Hallis, S.P., Choi, B.H., and Kwak, M.K. (2022). Role of CD133/NRF2 axis in the development of colon cancer stem cell-like properties. Front. Oncol. 11, 808300.
  85. Pasani, S., Sahoo, S., and Jolly, M.K. (2020). Hybrid E/M phenotype(s) and stemness: a mechanistic connection embedded in network topology. J. Clin. Med. 10, 60.
  86. Paul, M.K., Bisht, B., Darmawan, D.O., Chiou, R., Ha, V.L., Wallace, W.D., Chon, A.T., Hegab, A.E., Grogan, T., and Elashoff, D.A. (2014). Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling. Cell Stem Cell 15, 199-214. https://doi.org/10.1016/j.stem.2014.05.009
  87. Phillips, T.M., McBride, W.H., and Pajonk, F. (2006). The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst. 98, 1777-1785. https://doi.org/10.1093/jnci/djj495
  88. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M.A., and Daidone, M.G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506-5511. https://doi.org/10.1158/0008-5472.CAN-05-0626
  89. Prasetyanti, P.R. and Medema, J.P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41.
  90. Rachakonda, G., Sekhar, K.R., Jowhar, D., Samson, P.C., Wikswo, J.P., Beauchamp, R.D., Datta, P.K., and Freeman, M.L. (2010). Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene 29, 3703-3714. https://doi.org/10.1038/onc.2010.118
  91. Ricardo, S., Vieira, A.F., Gerhard, R., Leitao, D., Pinto, R., Cameselle-Teijeiro, J.F., Milanezi, F., Schmitt, F., and Paredes, J. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64, 937-946. https://doi.org/10.1136/jcp.2011.090456
  92. Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
  93. Romero, R., Sayin, V.I., Davidson, S.M., Bauer, M.R., Singh, S.X., LeBoeuf, S.E., Karakousi, T.R., Ellis, D.C., Bhutkar, A., Sanchez-Rivera, F.J., et al. (2017). Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362-1368. https://doi.org/10.1038/nm.4407
  94. Ryoo, I.G., Choi, B.H., Ku, S.K., and Kwak, M.K. (2018). High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol. 17, 246-258. https://doi.org/10.1016/j.redox.2018.04.015
  95. Ryoo, I.G., Choi, B.H., and Kwak, M.K. (2015). Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 6, 8167-8184. https://doi.org/10.18632/oncotarget.3047
  96. Ryoo, I.G., Kim, G., Choi, B.H., Lee, S.H., and Kwak, M.K. (2016a). Involvement of NRF2 signaling in doxorubicin resistance of cancer stem cell-enriched colonospheres. Biomol. Ther. (Seoul) 24, 482-488. https://doi.org/10.4062/biomolther.2016.145
  97. Ryoo, I.G., Lee, S.H., and Kwak, M.K. (2016b). Redox modulating NRF2: a potential mediator of cancer stem cell resistance. Oxid. Med. Cell. Longev. 2016, 2428153.
  98. Ryu, D., Lee, J.H., and Kwak, M.K. (2020). NRF2 level is negatively correlated with TGF-β1-induced lung cancer motility and migration via NOX4-ROS signaling. Arch. Pharm. Res. 43, 1297-1310. https://doi.org/10.1007/s12272-020-01298-z
  99. Saretzki, G., Armstrong, L., Leake, A., Lako, M., and von Zglinicki, T. (2004). Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22, 962-971. https://doi.org/10.1634/stemcells.22-6-962
  100. Satoh, H., Moriguchi, T., Taguchi, K., Takai, J., Maher, J.M., Suzuki, T., Winnard, P.T., Jr., Raman, V., Ebina, M., Nukiwa, T., et al. (2010). Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31, 1833-1843. https://doi.org/10.1093/carcin/bgq105
  101. Shen, X., Zhao, Y., Liu, G., Zhou, H.L., Fan, J., Zhang, L., Li, Y.L., Wang, Y., Liang, J., and Xu, Z.X. (2020). Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sci. 256, 117923.
  102. Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., and Sato, T. (2017). Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 545, 187-192. https://doi.org/10.1038/nature22081
  103. Singh, A., Bodas, M., Wakabayashi, N., Bunz, F., and Biswal, S. (2010). Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox Signal. 13, 1627-1637. https://doi.org/10.1089/ars.2010.3219
  104. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401. https://doi.org/10.1038/nature03128
  105. Song, I.S., Jeong, Y.J., Jung, Y., Park, Y.H., Shim, S., Kim, S.J., Eom, D.W., Hong, S.M., Lee, P.C.W., Kim, S.U., et al. (2021). The sulfiredoxin-peroxiredoxin redox system regulates the stemness and survival of colon cancer stem cells. Redox Biol. 48, 102190.
  106. de Sousa e Melo, F., Kurtova, A.V., Harnoss, J.M., Kljavin, N., Hoeck, J.D., Hung, J., Anderson, J.E., Storm, E.E., Modrusan, Z., Koeppen, H., et al. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature 543, 676-680. https://doi.org/10.1038/nature21713
  107. Taguchi, K. and Kensler, T.W. (2020). Nrf2 in liver toxicology. Arch. Pharm. Res. 43, 337-349. https://doi.org/10.1007/s12272-019-01192-3
  108. Taguchi, K. and Yamamoto, M. (2020). The KEAP1-NRF2 system as a molecular target of cancer treatment. Cancers (Basel) 13, 46.
  109. Takebe, N., Miele, L., Harris, P.J., Jeong, W., Bando, H., Kahn, M., Yang, S.X., and Ivy, S.P. (2015). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445-464. https://doi.org/10.1038/nrclinonc.2015.61
  110. Taniguchi, S., Elhance, A., Van Duzer, A., Kumar, S., Leitenberger, J.J., and Oshimori, N. (2020). Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369, eaay1813.
  111. Taylor, M.D., Poppleton, H., Fuller, C., Su, X., Liu, Y., Jensen, P., Magdaleno, S., Dalton, J., Calabrese, C., Board, J., et al. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323-335. https://doi.org/10.1016/j.ccr.2005.09.001
  112. Tebay, L.E., Robertson, H., Durant, S.T., Vitale, S.R., Penning, T.M., Dinkova-Kostova, A.T., and Hayes, J.D. (2015). Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 88(Pt B), 108-146. https://doi.org/10.1016/j.freeradbiomed.2015.06.021
  113. Tonelli, C., Chio, I.I.C., and Tuveson, D.A. (2018). Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 29, 1727-1745. https://doi.org/10.1089/ars.2017.7342
  114. Tothova, Z., Kollipara, R., Huntly, B.J., Lee, B.H., Castrillon, D.H., Cullen, D.E., McDowell, E.P., Lazo-Kallanian, S., Williams, I.R., Sears, C., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325-339. https://doi.org/10.1016/j.cell.2007.01.003
  115. Tsai, J.J., Dudakov, J.A., Takahashi, K., Shieh, J.H., Velardi, E., Holland, A.M., Singer, N.V., West, M.L., Smith, O.M., and Young, L.F. (2013). Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 15, 309-316. https://doi.org/10.1038/ncb2699
  116. Tsushima, M., Liu, J., Hirao, W., Yamazaki, H., Tomita, H., and Itoh, K. (2020). Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch. Pharm. Res. 43, 286-296. https://doi.org/10.1007/s12272-019-01188-z
  117. Tuy, K., Rickenbacker, L., and Hjelmeland, A.B. (2021). Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol. 44, 101953.
  118. Umemura, A., He, F., Taniguchi, K., Nakagawa, H., Yamachika, S., Font-Burgada, J., Zhong, Z., Subramaniam, S., Raghunandan, S., Duran, A., et al. (2016). p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935-948. https://doi.org/10.1016/j.ccell.2016.04.006
  119. Vermeulen, L., De Sousa, E.M.F., van der Heijden, M., Cameron, K., de Jong, J.H., Borovski, T., Tuynman, J.B., Todaro, M., Merz, C., Rodermond, H., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468-476. https://doi.org/10.1038/ncb2048
  120. Vilchez Mercedes, S.A., Bocci, F., Ahmed, M., Eder, I., Zhu, N., Levine, H., Onuchic, J.N., Jolly, M.K., and Wong, P.K. (2022). Nrf2 modulates the hybrid epithelial/mesenchymal phenotype and Notch signaling during collective cancer migration. Front. Mol. Biosci. 9, 807324.
  121. Wakabayashi, N., Shin, S., Slocum, S.L., Agoston, E.S., Wakabayashi, J., Kwak, M.K., Misra, V., Biswal, S., Yamamoto, M., and Kensler, T.W. (2010). Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci. Signal. 3, ra52.
  122. Wakabayashi, N., Skoko, J.J., Chartoumpekis, D.V., Kimura, S., Slocum, S.L., Noda, K., Palliyaguru, D.L., Fujimuro, M., Boley, P.A., Tanaka, Y., et al. (2014). Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol. Cell. Biol. 34, 653-663. https://doi.org/10.1128/MCB.01408-13
  123. Wang, J., Lu, Q., Cai, J., Wang, Y., Lai, X., Qiu, Y., Huang, Y., Ke, Q., Zhang, Y., Guan, Y., et al. (2019). Nestin regulates cellular redox homeostasis in lung cancer through the Keap1-Nrf2 feedback loop. Nat. Commun. 10, 5043.
  124. Wang, R., An, J., Ji, F., Jiao, H., Sun, H., and Zhou, D. (2008). Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun. 373, 151-154. https://doi.org/10.1016/j.bbrc.2008.06.004
  125. Wu, T., Harder, B.G., Wong, P.K., Lang, J.E., and Zhang, D.D. (2015). Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? Mol. Carcinog. 54, 1494-1502. https://doi.org/10.1002/mc.22202
  126. Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 5, 8.
  127. Yazaki, K., Matsuno, Y., Yoshida, K., Sherpa, M., Nakajima, M., Matsuyama, M., Kiwamoto, T., Morishima, Y., Ishii, Y., and Hizawa, N. (2021). ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. Eur. J. Cell Biol. 100, 151181.
  128. Yung, W.K., Shapiro, J.R., and Shapiro, W.R. (1982). Heterogeneous chemosensitivities of subpopulations of human glioma cells in culture. Cancer Res. 42, 992-998.
  129. Zhao, Q., Mao, A., Guo, R., Zhang, L., Yan, J., Sun, C., Tang, J., Ye, Y., Zhang, Y., and Zhang, H. (2017). Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis. Oncotarget 8, 36603-36613. https://doi.org/10.18632/oncotarget.16622
  130. Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028-1034. https://doi.org/10.1038/nm0901-1028
  131. Zhu, B., Tang, L., Chen, S., Yin, C., Peng, S., Li, X., Liu, T., Liu, W., Han, C., Stawski, L., et al. (2018). Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene 37, 4941-4954. https://doi.org/10.1038/s41388-018-0314-0
  132. Zhu, J., Wang, H., Chen, F., Fu, J., Xu, Y., Hou, Y., Kou, H.H., Zhai, C., Nelson, M.B., Zhang, Q., et al. (2016). An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic. Biol. Med. 99, 544-556. https://doi.org/10.1016/j.freeradbiomed.2016.09.010
  133. Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., and Liu, H. (2014). Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncol. Rep. 32, 1170-1178. https://doi.org/10.3892/or.2014.3320