DOI QR코드

DOI QR Code

Solar Flux Effects on the Variations of Equatorial Electrojet (EEJ) and Counter-Electrojet (CEJ) Current across the Different Longitudinal Sectors during Low and High Solar Activity

  • 투고 : 2023.02.06
  • 심사 : 2023.05.03
  • 발행 : 2023.06.15

초록

This study examined the effect of solar flux (F10.7) and sunspots number (R) on the daily variation of equatorial electrojet (EEJ) and morning/afternoon counter electrojet (MCEJ/ACEJ) in the ionospheric E region across the eight longitudinal sectors during quiet days from January 2008 to December 2013. In particular, we focus on both minimum and maximum solar cycle of 24. For this purpose, we have collected a 6-year ground-based magnetic data from multiple stations to investigate EEJ/CEJ climatology in the Peruvian, Brazilian, West & East African, Indian, Southeast Asian, Philippine, and Pacific sectors with the corresponding F10.7 and R data from satellites simultaneously. Our results reveal that the variations of monthly mean EEJ intensities were consistent with the variations of solar flux and sunspot number patterns of a cycle, further indicating that there is a significant seasonal and longitudinal dependence. During the high solar cycle period, F10.7 and R have shown a strong peak around equinoctial months, consequently, the strong daytime EEJs occurred in the Peruvian and Southeast Asian sectors followed by the Philippine regions throughout the years investigated. In those sectors, the correlation between the day Maxima EEJ and F10.7 strengths have a positive value during periods of high solar activity, and they have relatively higher values than the other sectors. A predominance of MCEJ occurrences is observed in the Brazilian (TTB), East African (AAE), and Peruvian (HUA) sectors. We have also observed the CEJ dependence on solar flux with an anti-correlation between ACEJ events and F10.7 are observed especially during a high solar cycle period.

키워드

과제정보

This work was done at the Department of Physics, CNCS, Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Ethiopia. The authors are thankful to them. We thankful and gratefully acknowledge the following data sources and their staffs for the opportunity to access the ground magnetometer data. The datasets generated during and/or analysed during this study are available in the following links. The data for this study were downloaded from Low-latitude Ionospheric Sensor Network LISN (http://lisn.igp.gob.pe/data/) for PIU & LET stations, from the INTERMAGNET data center (https://www.intermagnet. org/index-eng.php) for AAE, HUA, KOU, TAM, ABG, KDA & GUA stations, from AMBER Network (http://magnetometers. bc.edu/index.php/amber2) for ETH station, from the Bureau Centralde Magntisme Terrestre BCMT Network (http://www.bcmt.fr/wamnetnetwork.html) for the SAM station, from WDC Catalogue [the World Data Centre (WDC) for Geomagnetism, Edinburgh (http://www.wdc.bgs.ac.uk/dataportal/)]. TTB & QGZ station, and from SuperMAG website (http://supermag.jhuapl.edu/) for TIR, BCL, LKW & KTB stations. The 1 min-averaged data Solar Index F10.7 and R Sunspot Number (new version) data as well as the, Kp*10Kp*10 Index are obtained from the OMNIWeb Data Explorer (https://omniweb.gsfc.nasa.gov/form/dx1.html).

참고문헌

  1. Anderson D, Anghel A, Chau J, Veliz O, Daytime vertical E × B drift velocities inferred from ground-based magnetometer observations at low latitudes, J. Space Weather 2, 11 (2004). https://doi.org/10.1029/2004SW000095
  2. Balan N, Chen CY, Liu JY, Bailey GJ, Behaviour of the low-latitude ionosphere-plasmasphere system at long deep solar minimum, Indian J. Radio Space Phys. 41, 89-97 (2012).
  3. Basavaiah N, Geomagnetism: Solid Earth and Upper Atmosphere Perspectives (Springer Science & Business Media, 2012).
  4. Benaissa M, Berguig MC, Doumbia V, Bouraoui S, The equatorial electrojet (EEJ) current deduced from CHAMP satellite and ground magnetic measurements in West Africa, Arab. J. Geosci. 10, 329 (2017). https://doi.org/10.1007/s12517-017-3094-x
  5. Briggs BH, The variability of ionospheric dynamo currents, J. Atmos. Terr. Phys. 46, 419-429 (1984). https://doi.org/10.1016/0021-9169(84)90086-2
  6. British Geological Survey, Geomagnetic coordinate calculator (2019) [Internet], viewed 2023 Mar 15, available from: https://geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html
  7. Campbell WH, An introduction to quiet daily geomagnetic fields, in Quiet Daily Geomagnetic Fields, ed. Campbell WH (Birkhauser Verlag, Basel, 1989), 315-331.
  8. Chandrasekhar NP, Archana RK, Nagarajan N, Arora K, Variability of equatorial counter electrojet signatures in the Indian region, J. Geophys. Res. Space Phys. 122, 2185-2201 (2017). https://doi.org/10.1002/2016JA022904
  9. Chandrasekhar NP, Arora K, Nagarajan N, Characterization of seasonal and longitudinal variability of EEJ in the Indian region, J. Geophys. Res. Space Phys. 119, 10,242-10,259 (2014). https://doi.org/10.1002/2014JA020183
  10. Chapman S, The equatorial electrojet as detected from the abnormal electric current distribution above huancayo, peru, and elsewhere, Arch. Met. Geoph. Bioklimatol. Ser. A 4, 368-390 (1951). https://doi.org/10.1007/BF02246814
  11. Chapman S, Bartels J, Geomagnetism (Oxford University Press, Oxford, 1940).
  12. Cherkos AM, Nigussie M, A study of spatio-temporal variability of equatorial electrojet using long-term ground-observations, Adv. Space Res. 269, 869-888 (2022). https://doi.org/10.1016/j.asr.2021.10.014
  13. Doumouya V, Cohen Y, Arora BR, Yumoto K, Local time and longitude dependence of the equatorial electrojet magnetic effects, J. Atmos. Sol. Terr. Phys. 65, 1265-1282 (2003). https://doi.org/10.1016/j.jastp.2003.08.014
  14. Echer E, Tsurutani BT, Gonzalez WD, Extremely low geomagnetic activity during the recent deep solar cycle minimum, Proc. Int. Astron. Union 7, 200-209 (2012). https://doi.org/10.1017/S174392131200484X
  15. Elias AG, Zossi de Artigas M, de Haro Barbas BF, Trends in the solar quiet geomagnetic field variation linked to the Earth's magnetic field secular variation and increasing concentrations of greenhouse gases, J. Geophys. Res. 115, A08316 (2010). https://doi.org/10.1029/2009JA015136
  16. Fambitakoye O, Mayaud PN, Equatorial electrojet and regular daily variation SR—I. A determination of the equatorial electrojet parameters, J. Atmos. Terr. Phys. 38, 1-17 (1976a). https://doi.org/10.1016/0021-9169(76)90188-4
  17. Fambitakoye O, Mayaud PN, Equatorial electrojet and regular daily variation SR—II. The centre of the equatorial electrojet, J. Atmos. Terr. Phys. 38, 19-26 (1976b). https://doi.org/10.1016/0021-9169(76)90189-6
  18. Fang TW, Richmond AD, Liu JY, Maute A, Lin CH, et al., Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors, J. Atmos. Sol. Terr. Phys. 70, 2203-2211 (2008). https://doi.org/10.1016/j.jastp.2008.04.021
  19. Gasperini F, Forbes JM, Lunar-solar interactions in the equatorial electrojet, Geophys. Res. Lett. 41, 3026-3031 (2014). https://doi.org/10.1002/2014GL059294
  20. Gouin P, Reversal of the magnetic daily variation at Addis Aababa, Nature 193, 1145-1146 (1962). https://doi.org/10.1038/1931145a0
  21. Gouin P, A propos de l'existence possible d'un "counter electrojet" latitudes magnetiques equatorials, Ann. Geophys. 23, 41-47 (1967).
  22. Gurubaran S, The equatorial counter electrojet: part of a worldwide current system? Geophys. Res. Lett. 29, 51-1-51-4 (2002). https://doi.org/10.1029/2001GL014519
  23. Habarulema JB, Lefebvre G, Moldwin MB, Katamzi-Joseph ZT, Yizengaw E, Counter-electrojet occurrence as observed from C/NOFS satellite and ground-based magnetometer data over the African and American sectors. Space Weather 17, 1090-1104 (2019). https://doi.org/10.1029/2019SW002236
  24. Hamid NSA, Liu H, Uozumi T, Yumoto K, Equatorial electrojet dependence on solar activity in the Southeast Asia sector, Antarct. Rec. 57, 329-337 (2013). https://doi.org/10.15094/00009708
  25. Hanuise C, Mazaudier C, Vila P, Blanc M, Crochet M, Global dynamo simulation of ionospheric currents and their connection with the equatorial electrojet and counter electrojet: a case study, J. Geophys. Res. 88, 253-270 (1983). https://doi.org/10.1029/JA088iA01p00253
  26. Henney CJ, Toussaint WA, White SM, Arge CN, Forecasting F10.7 with solar magnetic flux transport modeling, Space Weather 10, S02011 (2012). https://doi.org/10.1029/2011SW000748
  27. Ismail WNI, Hamid NSA, Abdullah M, Yoshikawa A, Uozumi T, Longitudinal variation of EEJ current during different phases of solar cycle, J. Phys. Conf. Ser. 852, 012019 (2017). https://doi.org/10.1088/1742-6596/852/1/012019
  28. Ismail WNI, Hamid NSA, Abdullah M, Yoshikawa A, Uozumi T, et al., Comparison of EEJ longitudinal variation from satellite and ground measurements over different solar activity levels, Universe 7, 23 (2021). https://doi.org/10.3390/universe7020023
  29. Kutiev I, Tsagouri I, Perrone L, Pancheva D, Mukhtarov P, et al., Solar activity impact on the Earth's upper atmosphere, J. Space Weather Space Clim. 3, A06 (2013). https://doi.org/10.1051/swsc/2013028
  30. Macmillan S, Droujinina A, Long-term trends in geomagnetic daily variation, Earth Planets Space 59, 391-395 (2007). https://doi.org/10.1186/BF03352699
  31. Marriott RT, Richmond AD, Venkateswaran SV, The quiet-time equatorial electrojet and counter-electrojet, J. Geomagn. Geoelectr. 31, 311-340 (1979). https://doi.org/10.5636/jgg.31.311
  32. Matzka J, Siddiqui TA, Lilienkamp H, Stolle C, Veliz O, Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo, J. Atmos. Sol. Terr. Phys. 163, 120-125 (2017). https://doi.org/10.1016/j.jastp.2017.04.014
  33. Mayaud P, The equatorial counter-electrojet - a review of its geomagnetic aspects, J. Atmos. Terr. Phys. 39, 1055-1070 (1977). https://doi.org/10.1016/0021-9169(77)90014-9
  34. Mohd Rosli NI, Abdul Hamid NS, Abdullah M, Yusof KA, Yoshikawa A, et al., The variation of counter-electrojet current at the Southeast Asian sector during different solar activity levels, Appl. Sci. 12, 7138 (2022). https://doi.org/10.3390/app12147138
  35. Patil AR, Rao DRK, Rastogi RG, Equatorial electrojet strengths in the Indian and American sectors: part II. during high solar activity, J. Geomagn. Geoelectr. 42, 813-823 (1990). https://doi.org/10.5636/jgg.42.813
  36. Rabiu AB, Folarin OO, Uozumi T, Hamid NSA, Yoshikawa A, Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet, Ann. Geophys. 35, 535-545 (2017). https://doi.org/10.5194/angeo-35-535-2017
  37. Rastogi RG, Westward equatorial electrojet during daytime hours, J. Geophys. Res. 79, 1503-1512 (1974). https://doi.org/10.1029/JA079i010p01503
  38. Rastogi RG, Electromagnetic induction by the equatorial electrojet, Geophys. J. Int. 158, 16-31 (2004). https://doi.org/10.1111/j.1365-246X.2004.02128.x
  39. Rastogi RG, Klobuchar JA, Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res. Space Phys. 95, 19045-19052 (1990). https://doi.org/10.1029/JA095iA11p19045
  40. Rosli NIM, Hamid NSA, Abdullah M, Yusof KA, Yoshikawa A, et al., The variation of counter-electrojet current at the Southeast Asian sector during different solar activity levels, Appl. Sci. 12, 7138 (2022). https://doi.org/10.3390/app12147138
  41. Schlapp DM, Sellek R, Butcher EC, Studies of worldwide secular trends in the solar daily geomagnetic variation, Geophys. J. Int. 100, 469-475 (1990). https://doi.org/10.1111/j.1365-246X.1990.tb00699.x
  42. Sellek R, Secular trends in daily geomagnetic variations, J. Atmos. Sol. Terr. Phys. 42, 689-695 (1980). https://doi.org/10.1016/0021-9169(80)90052-5
  43. Siddiqui TA, Stolle C, Luhr H, Matzka J, On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet, J. Geophys. Res. Space Phys. 120, 10006-10019 (2015). https://doi.org/10.1002/2015JA021683
  44. Singh D, Gurubaran S, He M, Evidence for the influence of DE3 tide on the occurrence of equatorial counterelectrojet, Geophys. Res. Lett. 45, 2145-2150 (2018). https://doi.org/10.1002/2018GL077076
  45. Soares G, Yamazaki Y, Matzka J, Pinheiro K, Morschhauser A, et al., Equatorial counter electrojet longitudinal and seasonal variability in the American sector, J. Geophys. Res. Space Phys. 123, 9906-9920 (2018a). https://doi.org/10.1029/2018JA025968
  46. Soares G, Yamazaki Y, Matzka J, Pinheiro K, Stolle C, et al., Longitudinal variability of the equatorial counter electrojet during the solar cycle 24, Stud. Geophys. Geod. 63, 304-319 (2019). https://doi.org/10.1007/s11200-018-0286-0
  47. Soares GB, Matzka J, Pinheiro K, Preliminary minute means Geomagnetic Observatory Tatuoca (TTB), 2008 to 2017 (2018b) [Internet], viewed 2023 Apr 15, available from: https://doi.org/10.5880/GFZ.2.3.2018.005
  48. Tapping KF, The 10.7cm solar radio flux (F10.7), Space Weather 11, 394-406 (2013). https://doi.org/10.1002/swe.20064
  49. Tomas AT, Luhr H, Rother M, Manoj C, Olsen N, et al., What are the influences of solar eclipses on the equatorial electrojet?, J. Atmos. Sol. Terr. Phys. 70, 1497-1511 (2008). https://doi.org/10.1016/j.jastp.2008.05.009
  50. Yamazaki Y, Maute A, Sq and EEJ-a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents, Space Sci. Rev. 206, 299-405 (2017). https://doi. org/10.1007/s11214-016-0282-z
  51. Yamazaki Y, Yumoto K, Cardinal MG, Fraser BJ, Hattori P, et al., An empirical model of the quiet daily geomagnetic field variation, J. Geophys. Res. Space Phys. 116, A10312 (2011). https://doi.org/10.1029/2011JA016487