DOI QR코드

DOI QR Code

소형로켓엔진에 적용된 스월 동축형 인젝터의 형상변수와 기체-액체 운동량 플럭스 비에 따른 분무특성

Spray Characteristics According to the Variation of Design Parameters and Gas-liquid Momentum-flux Ratio in a Swirl-coaxial Injector Applied to Small Rocket Engine

  • Hyun Jong Ahn (Department of Mechanical Engineering, Graduate School, Pukyong National University) ;
  • Yun Hyeong Kang (Department of Mechanical Engineering, Graduate School, Pukyong National University) ;
  • Jeong Soo Kim (School of Mechanical Engineering, Pukyong National University)
  • 투고 : 2023.01.04
  • 심사 : 2023.02.13
  • 발행 : 2023.02.28

초록

소형로켓엔진에 적용되는 기체-액체 스월 동축형 인젝터의 분무성능을 파악하고자 형상변수와 추진제의 공급조건을 변화시켜 수류시험을 수행하였다. 인젝터의 형상변수인 스월 챔버의 직경 및 수축부의 각이 증가할수록 스월 강도가 증대되어 분무성능이 향상되었다. 또한, 기체-액체의 운동량 플럭스 비가 증가함에 따라 기체 유동이 액적 일부를 분무액막에서 이탈시켜, 분무시트의 중심부에서 gas-droplet mixture core가 형성되었다.

To understand the atomization performance in gas-liquid swirl-coaxial injector applied to a small rocket engine, a cold-flow test was performed by varying the design parameters and supply condition of propellants. As the swirl-chamber diameter and the angle of the convergent section, which are design parameters of injector increased, the spray performance of the injector improved by increasing the swirl strength. In addition, as the gas-liquid momentum-flux ratio increased, the gas flow separated some of the droplets from the liquid film, and a gas-droplet mixture core was formed in the center of the spray sheet.

키워드

과제정보

본 논문은 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 미래우주교육센터(2022M1A3C2085070)의 연구결과임.

참고문헌

  1. Yang, V. and Anderson, W., "Liquid Rocket Engine Combustion Instability," Progress in Astronautics and Aeronautics, Vol. 169, 1995. 
  2. Lee, S.J., Koo, J.Y. and Yoon, Y.B., "Technology and Developing Trends of Pintle Injector for Throttleable Engine," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 4, pp. 107-118, 2017.  https://doi.org/10.6108/KSPE.2017.21.4.107
  3. Gwak, E.J. and Park, S.Y., "Study on the Flow Characteristics of Urea-SCR Swirl injector according the Needle Lift Profile," Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 6, pp. 650-655, 2016.  https://doi.org/10.5762/KAIS.2016.17.6.650
  4. Cheng, R.K., Fable, S.A., Schmidt, D., Arellano, L. and Smith, K.O., "Development of a Low Swirl Injector Concept for Gas Turbines," 2001 International Joint Power Conference, New Orleans, L.A., U.S.A., LBNL-47801, Jun. 2001. 
  5. Lilley, D.G., "Swirl Flows in Combustion: A Review," AIAA Journal, Vol. 15, No. 8, pp. 1063-1078, 1977.  https://doi.org/10.2514/3.60756
  6. Syred, N. and Beer, J.M., "Combustion in Swirling Flows: A Review," Combustion and Flame, Vol. 23, No. 2, pp. 143-201, 1974.  https://doi.org/10.1016/0010-2180(74)90057-1
  7. Lucca-Negro, O. and O'Doherty, T., "Vortex Breakdown: A Review," Progress in Energy and Combustion Science, Vol. 27, No. 4, pp. 431-481, 2001.  https://doi.org/10.1016/S0360-1285(00)00022-8
  8. Hosseini, A.A., Ghodrat, M., Moghiman, M. and Pourhoseini, S.H., "Numerical Study of Inlet Air Swirl Intensity Effect of a Methane-air Diffusion Flame on its Combustion Characteristics," Case Studies in Thermal Engineering, Vol. 18, 100610, 2020. 
  9. Kim, S.H., Khil, T.O., Kim, D.J. and Yoon, Y.B., "Effect of Geometric Parameters on the Liquid Film Thickness and Air Core Formation in a Swirl Injector," Measurement Science and Technology, Vol. 20, No. 1, pp. 1-11, 2009.  https://doi.org/10.1088/0957-0233/20/1/015403
  10. Amini, G., "Liquid Flow in a Simplex Swirl Nozzle," International Journal of Multiphase Flow, Vol. 79, pp. 225-235, 2016.  https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.004
  11. Anand, R., Ajayalal, P., Kumar, V., Salih, A. and Nandakumar, K., "Spray and Atomization Characteristics of Gas-centered Swirl Coaxial Injectors," International Journal Spray and Combustion Dynamics, Vol. 9, No. 2, pp. 85-140, 2017.  https://doi.org/10.1177/1756827716655007
  12. Park, G.J., Oh, S.K. and Yoon, Y.B., "Characteristics of Gas-centered Swirl-coaxial Injector with Liquid Flow Excitation," Journal of Propulsion and Power, Vol. 35, No. 3, pp. 1-8, 2019.  https://doi.org/10.2514/1.B37458
  13. Schumaker, S., Danczyk, S. and Lightfoot, M., "Effect of Swirl on Gas-centered Swirl-coaxial Injectors," 47th AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit, San Diego, Ca, U.S.A., AIAA 2011-5621, Jul. 2011. 
  14. Bayvel, L. and Orzechowski, Z., Liquid Atomization, 1st ed., Taylor & Francis Inc., Oxfordshire, U.K., 1993. 
  15. Ashwani, K.G., Lilley D.G. and Syred, N., Swirl Flows, 1st ed., Abacus Press Inc., London, U.K., 1984. 
  16. Lefebvre, A.W., Atomization and Sprays, 2nd ed., CRC Press Inc., Boca Raton, FL, U.S.A., 2017.