참고문헌
- Davidson MW. Pioneers in optics: Zacharias Janssen and Johannes Kepler. Microscopy Today. 2009;17:44-6. https://doi.org/10.1017/S1551929509991052
- Davidson MW. Robert Hooke. Labmedicine. 2010;41:180-2. https://doi.org/10.1309/LMQ8H3HQHZQKECZZ
- Wimmer W. Carl Zeiss, Ernst Abbe, and advances in the light microscope. Microscopy Today. 2017;25:50-4. https://doi.org/10.1017/S155192951700058X
- Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: Super-resolution imaging of cells. Cell. 2010;143:1047-58. https://doi.org/10.1016/j.cell.2010.12.002
- Dedecker P, Hofkens J, Hotta JI. Left diffraction-unlimited optical microscopy. Materialstoday. 2008;11:12-21.
- Adhikari S, Moscatelli J, Smith EM, Banerjee C, Puchner EM. Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nature Communications. 2019;10. DOI: https://doi.org/10.1038/s41467-019-11384-6
- Moerner WE, Kador L. Optical detection and spectroscopy of single molecules in a solid. Physics Review Letters. 1989;62L2535-8.
- Moerner WE, Orrit M. Illuminating single molecules in condensed matter. Science. 1999;283:1670-6. https://doi.org/10.1126/science.283.5408.1670
- Meiniel W, Olivo-Marin JC, Angelini ED. Denoising of microscopy images: A review of the state-of-the-art, and a new sparsity-based method. IEEE Transactions on Image Processing. 2018;27:3842-56. https://doi.org/10.1109/TIP.2018.2819821
- Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision. 2004;20:89-97.
- Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation. 2005;4:490-530. https://doi.org/10.1137/040616024
- Dautov CP, Ozerdem MS. Introduction to Wavelets and their applications in signal denoising. Bitlis Eren University Journal of Science and Technology. 2018;8:1-10. https://doi.org/10.17678/beuscitech.349020
- Srivastava M, Anderson CL, Freed JH. A new wavelet denoising method for selecting decomposition levels and noise thresholds. IEEE Access. 2016;4:3862-77. https://doi.org/10.1109/ACCESS.2016.2587581
- Wahab MF, O'Haver TC. Wavelet transforms in separation science for denoising and peak overlap detection. Journal of Separation Science. 2020;43:1998-2010. https://doi.org/10.1002/jssc.202000013
- Zhang M, Lu C, Liu C. Improved double-threshold denoising method based on the wavelet transform. OSA Continuum. 2019;2:2328-42. https://doi.org/10.1364/OSAC.2.002328
- Nowak RD. Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing. 1999;8:1408-19. https://doi.org/10.1109/83.791966
- Zhang Y, Ding W, Pan Z, Qin J. Improved wavelet threshold for image de-noising. Frontiers in Neuroscience. 2019;13. DOI: https://doi.org/10.3389/fnins.2019.00039
- Donoho DL. De-noising by soft-thresholding. IEEE Transactions on Information Theory. 1995;41:613-27. https://doi.org/10.1109/18.382009
- AlAsadi AHH. Contourlet transform based method for medical image denoising. Journal of AL-Qadisiyah for Computer Science and Mathematics. 2015;7:1-7.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009;339:332-6. https://doi.org/10.1136/bmj.b2535
- Wang XH, Istepanian RSH, Song YH. Microarray image enhancement by denoising using stationary wavelet transform. IEEE Transactions on Nanobioscience. 2003;2:184-9. https://doi.org/10.1109/TNB.2003.816225
- Gopalappa C, Das TK, Enkemann S, Eschrich S. Removal of hybridization and scanning noise from microarrays. IEEE Transactions on Nanobioscience. 2009;8:210-8. https://doi.org/10.1109/TNB.2009.2029100
- Van't Hoff M, Reuter M, Dryden DTF, Oheim M. Screening by imaging: Scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques. Physical Chemistry Chemical Physics. 2009;11:7713-20. https://doi.org/10.1039/b823155a
- Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita JB, Salamero J. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Transactions on Medical Imaging. 2010;29:442-54. https://doi.org/10.1109/TMI.2009.2033991
- Howlader T, Chaubey YP. Noise reduction of cDNA microarray images using complex wavelets. IEEE Transactions on Image Processing. 2010;19:1953-67. https://doi.org/10.1109/TIP.2010.2045691
- Luisier F, Blu T, Unser M. Image denoising in mixed poisson-gaussian noise. IEEE Transactions on Image Processing. 2011;20:696-708. https://doi.org/10.1109/TIP.2010.2073477
- Chang CW, Mycek MA. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. Journal of Biophotonics. 2013;249:449-57.
- Das DK, Chakraborty C, Mitra B, Maiti AK, Ray AK. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia. Journal of Microscopy. 2013;249:136-49. https://doi.org/10.1111/jmi.12002
- Giryes R, Elad M. Sparsity based poisson denoising with dictionary learning. IEEE Transactions on Image Processing. 2014;23:5057-69. https://doi.org/10.1109/TIP.2014.2362057
- Lanza A, Morigi S, Sgallari F, Wen YW. Image restoration with Poisson-Gaussian mixed noise. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2014;2:12-24. https://doi.org/10.1080/21681163.2013.811039
- Yoon JW. Statistical denoising scheme for single molecule fluorescence microscopic images. Biomedical Signal Processing and Control. 2014;10:11-20. https://doi.org/10.1016/j.bspc.2013.12.005
- Bernas T, Starosolski R, Wojcicki R. Application of detector precision characteristics for the denoising of biological micrographs in the wavelet domain. Biomedical Signal Processing and Control. 2015;19:1-28. https://doi.org/10.1016/j.bspc.2015.02.010
- Yang S, Lee BU. Poisson-Gaussian noise reduction using the hidden markov model in contourlet domain for fluorescence microscopy images. PLoS One. 2015;10. DOI: https://doi.org/10.1371/journal.pone.0136964
- Bai C, Liu C, Jia H, Peng T, Min J, Lei M, Yu X, Yao B. Compressed blind deconvolution and denoising for complementary beam subtraction light-sheet fluorescence microscopy. IEEE Transactions on Biomedical Engineering. 2019;66:2979-89. https://doi.org/10.1109/TBME.2019.2899583
- Xiao C, Smith ZJ, Chu K. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint. Journal of Microscopy. 2019;275:24-35. https://doi.org/10.1111/jmi.12799
- Kim JY, Lee Y. Preliminary study of improved median filter using adaptively mask size in light microscopic image. Microscopy. 2020;69:31-6. https://doi.org/10.1093/jmicro/dfz111