DOI QR코드

DOI QR Code

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Ilhan Chang (Department of Civil Systems Engineering, Ajou University) ;
  • Seok-Jun Kang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Dong-Hyuk Lee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2022.11.20
  • Accepted : 2023.03.03
  • Published : 2023.04.25

Abstract

Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

Keywords

Acknowledgement

This work was supported by the National Research Foun dation of Korea (NRF) grant (No. 2022R1A2C2091517) an d the Underground City of the Future Program funded by th e Korea government (MSIT).

References

  1. Amelian, S., Song, C.R., Kim, Y., Lindemann, M. and Bitar, L. (2022), "Weathering durability of biopolymerized shales and glacial tills", Geomech. Eng., 28(4), 375-384. https://doi.org/10.12989/gae.2022.28.4.375.
  2. ASTM (2015), Standard test Methods for wetting and drying compacted soil-cement mixtures, ASTM D559/D559M-15, West Conshohocken, PA: ASTM.
  3. ASTM (2017), D1633-17: Standard test methods for compressive strength of molded soil-cement cylinders, ASTM International, West Conshohocken, PA. http://doi.org/10.1520/D1633-17.
  4. ASTM (2017), D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA. http://doi.org/10.1520/D6913_D6913M-17.
  5. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-016-2366-1.
  6. Bergmann, D., Furth, G. and Mayer, C. (2008), "Binding of bivalent cations by xanthan in aqueous solution", Int. J. Biol. Macromol., 43(3), 245-251. https://doi.org/10.1016/j.ijbiomac.2008.06.001.
  7. Boonkanon, C., Phatthanawiwat, K., Chuenchom, L., Lamthornkit, N., Taweekarn, T., Wongniramaikul, W. and Choodum, A. (2021), "Preparation and characterization of calcium cross-linked starch monolithic cryogels and their application as cost-effective green filters", Polymers. 13(22), 3975. http://doi.org/10.3390/polym13223975.
  8. Bryant, C.M. and Hamaker, B.R. (1997), "Effect of lime on gelatinization of corn flour and starch", Cereal Chem., 74(2), 171-175. https://doi.org/10.1094/CCHEM.1997.74.2.171.
  9. Chang, I. and Cho, G.-C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  10. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
  11. Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Const. Build. Mater., 143, 210-221. https://dx.doi.org/10.1016/j.conbuildmat.2017.02.061.
  12. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Const. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  13. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.-M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Trans. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  14. Chen, F., Xu, Y., Wang, C. and Mao, J. (2013), "Effects of concrete content on seed germination and seedling establishment in vegetation concrete matrix in slope restoration", Ecol. Eng., 58, 99-104. https://doi.org/10.1016/j.ecoleng.2013.06.016
  15. Cornejo-Villegas, M.d.l.A., Rincon-Londono, N., Real-Lopez, D. and Rodriguez-Garcia, M.E. (2018), "Effect of Ca2+ ions on the pasting, morphological, structural, vibrational, and mechanical properties of corn starch-water system", J. Cereal Sci., https://doi.org/10.1016/j.jcs.2017.10.003.
  16. Eliasson, A.C. (2017), Carbohydrates in food, CRC Press, Florida, U.S.A.
  17. Garcia-Ochoa, F., Santos, V., Casas, J. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  18. Garver, F., Sharma, M. and Pope, G. (1989). "The competition for chromium between xanthan biopolymer and resident clays in sandstones", SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/SPE-19632-MS.
  19. GhavamiNejad, A., Ashammakhi, N., Wu, X.Y. and Khademhosseini, A. (2020), "Crosslinking strategies for 3D bioprinting of polymeric hydrogels", Small, 16(35), 2002931. https://doi.org/10.1002/smll.202002931.
  20. Harada, T., Kanzawa, Y., Kanenaga, K., Koreeda, A. and Harada, A. (1991), "Electron microscopic studies on the ultrastructure of curdlan and other polysaccharides in gels used in foods", Food Struct., 10(1), 1. https://doi.org/10.1093/oxfordjournals.jmicro.a050168.
  21. Hassan, A., Isa, M.M., Ishak, Z.M., Ishak, N., Rahman, N.A. and Salleh, F.M. (2018), "Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application", High Perform. Polymers, 30(8), 890-899. https://doi.org/10.1177/095400831878.
  22. Im, J., Chang, I. and Cho, G.C. (2021), "Effects of malonic acid crosslinked starch for soil strength improvement", Trans. Geotech., 31, 100653. https://doi.org/10.1016/j.trgeo.2021.100653.
  23. Kang, W., Ko, D. and Kang, J. (2021), "Erosion resistance performance of surface-reinforced levees using novel biopolymers investigated via real-scale overtopping experiments", Water, 13(18), 2482. https://doi.org/10.3390/w13182482.
  24. Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.
  25. Ko, D. and Kang, J. (2018), "Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer", Water, 10(8), 1059. https://doi.org/10.3390/w10081059.
  26. Koohi, A.D., Moghaddam, A.Z., Sefti, M.V. and Moghadam, A.M. (2011), "Swelling and gelation time behavior of sulfonated polyacrylamide/chromium triacetate hydrogels", J. Macromol. Sci. Part B, 50(10), 1905-1920. https://doi.org/10.1080/00222348.2010.549419
  27. Kulshreshtha, Y., Schlangen, E., Jonkers, H., Vardon, P. and Van Paassen, L. (2017), "Corncrete: a corn starch based building material", Constr. Build. Mater., 154, 411-423. https://doi.org/10.1016/j.conbuildmat.2017.07.184.
  28. Kumara, S.A. and Sujatha, E.R. (2020), "Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. http://doi.org/10.12989/gae.2020.21.5.413.
  29. Kuo, C.K. and Ma, P.X. (2001), "Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties", Biomaterials, 22(6), 511-521. http://doi.org/10.1016/s0142-9612(00)00201-5.
  30. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotech. Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
  31. Lan, C., Yu, L., Chen, P., Chen, L., Zou, W., Simon, G. and Zhang, X. (2010), "Design, preparation and characterization of self-reinforced starch films through chemical modification", Macromol. Mater. Eng., 295(11), 1025-1030. http://doi.org/10.1002/mame.201000186.
  32. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer - An environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. http://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
  33. Lee, M., Im, J., Chang, I. and Cho, G.C. (2021), "Evaluation of Injection capabilities of a biopolymer-based grout material", Geomech. Eng., 25(1), 31-40. https://doi.org/10.12989/gae.2021.25.1.031.
  34. Lee, M., Im, J., Cho, G.C., Ryu, H.H. and Chang, I. (2021), "Interfacial shearing behavior along xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects", Appl. Sci., 11(1), 139. https://doi.org/10.3390/app11010139
  35. Lee, M., Kwon, Y.M., Park, D.Y., Chang, I. and Cho, G.C. (2022), "Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles", Scientific Reports, 12(1), 1-15. https://doi.org/10.1038/s41598-022-23823-4.
  36. Maher, G. (1983), "Alkali gelatinization of starches", Starch-Starke. 35(7), 226-234. https://doi.org/10.1002/star.19830350703
  37. Matsuzaki, S., Azuma, K., Lin, X., Kuragano, M., Uwai, K., Yamanaka, S. and Tokuraku, K. (2021), "Farm use of calcium hydroxide as an effective barrier against pathogens", Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-86796-w.
  38. MOLIT (2009), Greening construction on road slope: design and construction guideline, Ministry of Land Infrastructure and Transport (MOLIT), South Korea.
  39. NIAST (2000), Analytical methods of soil and plant, National Institute of Agricultural Science and Technology (NIAST), Rural Developement Administration, South Korea.
  40. Oh, J.K., Lee, D.I. and Park, J.M. (2009), "Biopolymer-based microgels/nanogels for drug delivery applications", Prog. Polym. Sci., 34(12), 1261-1282. https://doi.org/10.1016/j.progpolymsci.2009.08.001.
  41. Park, T., Ampunan, V., Maeng, S. and Chung, E. (2017), "Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal", Chemosphere. 167, 91-97. https://doi.org/10.1016/j.chemosphere.2016.09.150.
  42. Patel, J., Maji, B., Moorthy, N.H.N. and Maiti, S. (2020), "Xanthan gum derivatives: review of synthesis, properties and diverse applications", RSC Adv., 10(45), 27103-27136. https://doi.org/10.1039/D0RA04366D.
  43. Perritano, J. (2018), Starch and other carbohydrates, Mason Crest, Broomall, PA.
  44. Reddy, N., Reddy, R. and Jiang, Q. (2015), "Crosslinking biopolymers for biomedical applications", Trends in Biotechnology, 33(6), 362-369. http://doi.org/10.1016/j.tibtech.2015.03.008.
  45. Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983.
  46. Shibaev, A.V., Muravlev, D.A., Muravleva, A.K., Matveev, V.V., Chalykh, A.E. and Philippova, O.E. (2020), "pH-dependent gelation of a stiff anionic polysaccharide in the presence of metal ions", Polym., 12(4), 868. https://doi.org/10.3390/polym12040868
  47. Shimizu, O. and Ono, M. (2016), "Relationship of tephra stratigraphy and hydraulic conductivity with slide depth in rainfall-induced shallow landslides in Aso Volcano, Japan", Landslides, 13(3), 577-582. https://doi.org/10.1007/s10346-015-0666-2
  48. Singh, S.P. and Das, R. (2020), "Geo-engineering properties of expansive soil treated with xanthan gum biopolymer", Geomech. Geoeng., 15(2), 107-122. https://doi.org/10.1080/17486025.2019.1632495.
  49. Sircar, S., Keener, J.P. and Fogelson, A.L. (2013), "The effect of divalent vs. monovalent ions on the swelling of Mucin-like polyelectrolyte gels: Governing equations and equilibrium analysis", The J. Chem. Phys., 138(1), 014901. http://doi.org/10.1063/1.4772405.
  50. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Scientific Reports, 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x.
  51. Sutherland, I.W. (1994), "Structure-function relationships in microbial exopolysaccharides", Biotechnol. Adv., 12(2), 393-448. http://doi.org/10.1016/0734-9750(94)90018-3.
  52. Sworn, G. (2021), Chapter 27 - Xanthan gum in Handbook of Hydrocolloids, Woodhead Publishing
  53. Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivabiity improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475.
  54. Tungittiplakorn, W., Lion, L.W., Cohen, C. and Kim, J.Y. (2004), "Engineered polymeric nanoparticles for soil remediation", Environ. Sci. Technol., 38(5), 1605-1610. https://doi.org/10.1021/es0348997.
  55. Wakatsuki, T., Tanaka, Y. and Matsukura, Y. (2005), "Soil slips on weathering-limited slopes underlain by coarse-grained granite or fine-grained gneiss near Seoul, Republic of Korea", Catena, 60(2), 181-203. http://doi.org/10.1016/j.catena.2004.11.003.
  56. Wang, R., Chen, C., Pang, Z., Wang, X., Zhou, Y., Dong, Q., Guo, M., Gao, J., Ray, U. and Xia, Q. (2022), "Fabrication of Cellulose-Graphite Foam via Ion Cross-linking and Ambient-Drying", Nano Lett.
  57. Wang, Z.-F. and Chen, Y. (2017), "Strength of cement-stabilised clay by hardness testing", Proceedings of the Institution of Civil Engineers-Construction Materials, 170(5), 250-257. https://doi.org/10.1680/jcoma.15.00057
  58. Wu, Z., Gao, W., Wu, Z., Iwashita, K. and Yang, C. (2011), "Synthesis and characterization of a novel chemical sand-fixing material of hydrophilic polyurethane", J. Soc. Mater. Sci. Jap., 60(7), 674-679. https://doi.org/10.2472/jsms.60.674.
  59. Yamanaka, K. and Matsuo, K. (1962), "Studies on soil hardness (part 1) on the soil hardness tester", J. Sci. Soil Manure Jap., 33(7), 343-347.