Acknowledgement
This work was supported by the National Research Foun dation of Korea (NRF) grant (No. 2022R1A2C2091517) an d the Underground City of the Future Program funded by th e Korea government (MSIT).
References
- Amelian, S., Song, C.R., Kim, Y., Lindemann, M. and Bitar, L. (2022), "Weathering durability of biopolymerized shales and glacial tills", Geomech. Eng., 28(4), 375-384. https://doi.org/10.12989/gae.2022.28.4.375.
- ASTM (2015), Standard test Methods for wetting and drying compacted soil-cement mixtures, ASTM D559/D559M-15, West Conshohocken, PA: ASTM.
- ASTM (2017), D1633-17: Standard test methods for compressive strength of molded soil-cement cylinders, ASTM International, West Conshohocken, PA. http://doi.org/10.1520/D1633-17.
- ASTM (2017), D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA. http://doi.org/10.1520/D6913_D6913M-17.
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-016-2366-1.
- Bergmann, D., Furth, G. and Mayer, C. (2008), "Binding of bivalent cations by xanthan in aqueous solution", Int. J. Biol. Macromol., 43(3), 245-251. https://doi.org/10.1016/j.ijbiomac.2008.06.001.
- Boonkanon, C., Phatthanawiwat, K., Chuenchom, L., Lamthornkit, N., Taweekarn, T., Wongniramaikul, W. and Choodum, A. (2021), "Preparation and characterization of calcium cross-linked starch monolithic cryogels and their application as cost-effective green filters", Polymers. 13(22), 3975. http://doi.org/10.3390/polym13223975.
- Bryant, C.M. and Hamaker, B.R. (1997), "Effect of lime on gelatinization of corn flour and starch", Cereal Chem., 74(2), 171-175. https://doi.org/10.1094/CCHEM.1997.74.2.171.
- Chang, I. and Cho, G.-C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
- Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Const. Build. Mater., 143, 210-221. https://dx.doi.org/10.1016/j.conbuildmat.2017.02.061.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Const. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.-M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Trans. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
- Chen, F., Xu, Y., Wang, C. and Mao, J. (2013), "Effects of concrete content on seed germination and seedling establishment in vegetation concrete matrix in slope restoration", Ecol. Eng., 58, 99-104. https://doi.org/10.1016/j.ecoleng.2013.06.016
- Cornejo-Villegas, M.d.l.A., Rincon-Londono, N., Real-Lopez, D. and Rodriguez-Garcia, M.E. (2018), "Effect of Ca2+ ions on the pasting, morphological, structural, vibrational, and mechanical properties of corn starch-water system", J. Cereal Sci., https://doi.org/10.1016/j.jcs.2017.10.003.
- Eliasson, A.C. (2017), Carbohydrates in food, CRC Press, Florida, U.S.A.
- Garcia-Ochoa, F., Santos, V., Casas, J. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
- Garver, F., Sharma, M. and Pope, G. (1989). "The competition for chromium between xanthan biopolymer and resident clays in sandstones", SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/SPE-19632-MS.
- GhavamiNejad, A., Ashammakhi, N., Wu, X.Y. and Khademhosseini, A. (2020), "Crosslinking strategies for 3D bioprinting of polymeric hydrogels", Small, 16(35), 2002931. https://doi.org/10.1002/smll.202002931.
- Harada, T., Kanzawa, Y., Kanenaga, K., Koreeda, A. and Harada, A. (1991), "Electron microscopic studies on the ultrastructure of curdlan and other polysaccharides in gels used in foods", Food Struct., 10(1), 1. https://doi.org/10.1093/oxfordjournals.jmicro.a050168.
- Hassan, A., Isa, M.M., Ishak, Z.M., Ishak, N., Rahman, N.A. and Salleh, F.M. (2018), "Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application", High Perform. Polymers, 30(8), 890-899. https://doi.org/10.1177/095400831878.
- Im, J., Chang, I. and Cho, G.C. (2021), "Effects of malonic acid crosslinked starch for soil strength improvement", Trans. Geotech., 31, 100653. https://doi.org/10.1016/j.trgeo.2021.100653.
- Kang, W., Ko, D. and Kang, J. (2021), "Erosion resistance performance of surface-reinforced levees using novel biopolymers investigated via real-scale overtopping experiments", Water, 13(18), 2482. https://doi.org/10.3390/w13182482.
- Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.
- Ko, D. and Kang, J. (2018), "Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer", Water, 10(8), 1059. https://doi.org/10.3390/w10081059.
- Koohi, A.D., Moghaddam, A.Z., Sefti, M.V. and Moghadam, A.M. (2011), "Swelling and gelation time behavior of sulfonated polyacrylamide/chromium triacetate hydrogels", J. Macromol. Sci. Part B, 50(10), 1905-1920. https://doi.org/10.1080/00222348.2010.549419
- Kulshreshtha, Y., Schlangen, E., Jonkers, H., Vardon, P. and Van Paassen, L. (2017), "Corncrete: a corn starch based building material", Constr. Build. Mater., 154, 411-423. https://doi.org/10.1016/j.conbuildmat.2017.07.184.
- Kumara, S.A. and Sujatha, E.R. (2020), "Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. http://doi.org/10.12989/gae.2020.21.5.413.
- Kuo, C.K. and Ma, P.X. (2001), "Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties", Biomaterials, 22(6), 511-521. http://doi.org/10.1016/s0142-9612(00)00201-5.
- Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotech. Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
- Lan, C., Yu, L., Chen, P., Chen, L., Zou, W., Simon, G. and Zhang, X. (2010), "Design, preparation and characterization of self-reinforced starch films through chemical modification", Macromol. Mater. Eng., 295(11), 1025-1030. http://doi.org/10.1002/mame.201000186.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer - An environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. http://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
- Lee, M., Im, J., Chang, I. and Cho, G.C. (2021), "Evaluation of Injection capabilities of a biopolymer-based grout material", Geomech. Eng., 25(1), 31-40. https://doi.org/10.12989/gae.2021.25.1.031.
- Lee, M., Im, J., Cho, G.C., Ryu, H.H. and Chang, I. (2021), "Interfacial shearing behavior along xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects", Appl. Sci., 11(1), 139. https://doi.org/10.3390/app11010139
- Lee, M., Kwon, Y.M., Park, D.Y., Chang, I. and Cho, G.C. (2022), "Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles", Scientific Reports, 12(1), 1-15. https://doi.org/10.1038/s41598-022-23823-4.
- Maher, G. (1983), "Alkali gelatinization of starches", Starch-Starke. 35(7), 226-234. https://doi.org/10.1002/star.19830350703
- Matsuzaki, S., Azuma, K., Lin, X., Kuragano, M., Uwai, K., Yamanaka, S. and Tokuraku, K. (2021), "Farm use of calcium hydroxide as an effective barrier against pathogens", Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-86796-w.
- MOLIT (2009), Greening construction on road slope: design and construction guideline, Ministry of Land Infrastructure and Transport (MOLIT), South Korea.
- NIAST (2000), Analytical methods of soil and plant, National Institute of Agricultural Science and Technology (NIAST), Rural Developement Administration, South Korea.
- Oh, J.K., Lee, D.I. and Park, J.M. (2009), "Biopolymer-based microgels/nanogels for drug delivery applications", Prog. Polym. Sci., 34(12), 1261-1282. https://doi.org/10.1016/j.progpolymsci.2009.08.001.
- Park, T., Ampunan, V., Maeng, S. and Chung, E. (2017), "Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal", Chemosphere. 167, 91-97. https://doi.org/10.1016/j.chemosphere.2016.09.150.
- Patel, J., Maji, B., Moorthy, N.H.N. and Maiti, S. (2020), "Xanthan gum derivatives: review of synthesis, properties and diverse applications", RSC Adv., 10(45), 27103-27136. https://doi.org/10.1039/D0RA04366D.
- Perritano, J. (2018), Starch and other carbohydrates, Mason Crest, Broomall, PA.
- Reddy, N., Reddy, R. and Jiang, Q. (2015), "Crosslinking biopolymers for biomedical applications", Trends in Biotechnology, 33(6), 362-369. http://doi.org/10.1016/j.tibtech.2015.03.008.
- Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983.
- Shibaev, A.V., Muravlev, D.A., Muravleva, A.K., Matveev, V.V., Chalykh, A.E. and Philippova, O.E. (2020), "pH-dependent gelation of a stiff anionic polysaccharide in the presence of metal ions", Polym., 12(4), 868. https://doi.org/10.3390/polym12040868
- Shimizu, O. and Ono, M. (2016), "Relationship of tephra stratigraphy and hydraulic conductivity with slide depth in rainfall-induced shallow landslides in Aso Volcano, Japan", Landslides, 13(3), 577-582. https://doi.org/10.1007/s10346-015-0666-2
- Singh, S.P. and Das, R. (2020), "Geo-engineering properties of expansive soil treated with xanthan gum biopolymer", Geomech. Geoeng., 15(2), 107-122. https://doi.org/10.1080/17486025.2019.1632495.
- Sircar, S., Keener, J.P. and Fogelson, A.L. (2013), "The effect of divalent vs. monovalent ions on the swelling of Mucin-like polyelectrolyte gels: Governing equations and equilibrium analysis", The J. Chem. Phys., 138(1), 014901. http://doi.org/10.1063/1.4772405.
- Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Scientific Reports, 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x.
- Sutherland, I.W. (1994), "Structure-function relationships in microbial exopolysaccharides", Biotechnol. Adv., 12(2), 393-448. http://doi.org/10.1016/0734-9750(94)90018-3.
- Sworn, G. (2021), Chapter 27 - Xanthan gum in Handbook of Hydrocolloids, Woodhead Publishing
- Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivabiity improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475.
- Tungittiplakorn, W., Lion, L.W., Cohen, C. and Kim, J.Y. (2004), "Engineered polymeric nanoparticles for soil remediation", Environ. Sci. Technol., 38(5), 1605-1610. https://doi.org/10.1021/es0348997.
- Wakatsuki, T., Tanaka, Y. and Matsukura, Y. (2005), "Soil slips on weathering-limited slopes underlain by coarse-grained granite or fine-grained gneiss near Seoul, Republic of Korea", Catena, 60(2), 181-203. http://doi.org/10.1016/j.catena.2004.11.003.
- Wang, R., Chen, C., Pang, Z., Wang, X., Zhou, Y., Dong, Q., Guo, M., Gao, J., Ray, U. and Xia, Q. (2022), "Fabrication of Cellulose-Graphite Foam via Ion Cross-linking and Ambient-Drying", Nano Lett.
- Wang, Z.-F. and Chen, Y. (2017), "Strength of cement-stabilised clay by hardness testing", Proceedings of the Institution of Civil Engineers-Construction Materials, 170(5), 250-257. https://doi.org/10.1680/jcoma.15.00057
- Wu, Z., Gao, W., Wu, Z., Iwashita, K. and Yang, C. (2011), "Synthesis and characterization of a novel chemical sand-fixing material of hydrophilic polyurethane", J. Soc. Mater. Sci. Jap., 60(7), 674-679. https://doi.org/10.2472/jsms.60.674.
- Yamanaka, K. and Matsuo, K. (1962), "Studies on soil hardness (part 1) on the soil hardness tester", J. Sci. Soil Manure Jap., 33(7), 343-347.