Acknowledgement
This work was mainly supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), No. 2021R1C1C1006003. One of the co-author "Jin-Seop Kim" was partially supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF-2021M2E1A1085193) funded by the Ministry of Science and ICT.
References
- Abbey, S.J., Ngambi, S. and Ganjian, E. (2017), "Development of strength models for prediction of unconfined compressive strength of cement/byproduct material improved soils", Geotech. Test. J., 40(6), 928-935. https://doi.org/10.1520/GTJ20160138.
- Anandarajah, A. and Chen, J. (1997), "Van der Waals attractive force between clay particles in water and contaminants", Soils Found., 37(2), 27-37. https://doi.org/10.3208/sandf.37.2_27.
- Fattahi, H. and Hasanipanah, M. (2021), "Predicting the shear strength parameters of rock: A comprehensive intelligent approach", Geomech. Eng., 27(5), 511-525. https://doi.org/10.12989/gae.2021.27.5.511.
- Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Vol. 21). Springer.
- Goharzay, M., Noorzad, A., Ardakani, A.M. and Jalal, M. (2017), "A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method", J. Rock Mech. Geotech. Eng., 9(4), 683-693. https://doi.org/10.1016/j.jrmge.2017.03.011.
- Golbraikh, A. and Tropsha, A. (2002), "Beware of q2!", J. Molecular Graphics Model., 20(4), 269-276. https://doi.org/10.1016/S1093-3263(01)00123-1.
- Gunaydin, O., Gokoglu, A. and Fener, M. (2010), "Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks", Adv. Eng. Softw., 41(9), 1115-1123. https://doi.org/10.1016/j.advengsoft.2010.06.008.
- Iqbal, M.F., Liu, Q., Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322.
- Karakan, E., Shimobe, S. and Sezer, A. (2020), "Effect of clay fraction and mineralogy on fall cone results of clay-sand mixtures", Eng. Geol., 279, 105887. https://doi.org/10.1016/j.enggeo.2020.105887.
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Mass., MIT Press.
- Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
- Leong, H.Y., Ong, D.E.L., Sanjayan, J.G. and Nazari, A. (2015), "A genetic programming predictive model for parametric study of factors affecting strength of geopolymers", RSC Advances, 5(104), 85630-85639. https://doi.org/10.1039/C5RA16286F.
- Leong, H.Y., Ong, D.E.L., Sanjayan, J.G., Nazari, A. and Kueh, S.M. (2018), "Effects of significant variables on compressive strength of soil-fly ash geopolymer: variable analytical approach based on neural networks and genetic programming", J. Mater. Civil Eng., 30(7), 4018129. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002246.
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- Moayedi, H., Mosallanezhad, M., Rashid, A.S.A., Jusoh, W.A.W., and Muazu, M.A. (2020), "A systematic review and metaanalysis of artificial neural network application in geotechnical engineering: theory and applications", Neural Comput. Appl., 32(2), 495-518. https://doi.org/10.1007/s00521-019-04109-9.
- Mohammadi, M., Fatemi Aghda, S.M., Talkhablou, M. and Cheshomi, A. (2020), "Prediction of the shear strength parameters from easily-available soil properties by means of multivariate regression and artificial neural network methods", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1778194.
- Narendra, B.S., Sivapullaiah, P.V., Suresh, S. and Omkar, S.N. (2006), "Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study", Comput. Geotech., 33(3), 196-208. https://doi.org/10.1016/j.compgeo.2006.03.006.
- Pham, V.N., Oh, E. and Ong, D.E.L. (2022), "Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming", Neural Comput. Appl., 1-19. https://doi.org/10.1007/s00521-022-06931-0.
- Sasmal, S.K. and Behera, R.N. (2021), "Application of artificial intelligence methods for predicting transient response of foundation", Geomec. Eng., 27(3), 197-211. https://doi.org/10.12989/gae.2021.27.3.197.
- Shahmansouri, A.A., Bengar, H.A. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Sharma, L.K. and Singh, t.N. (2018), "Regression-based models for the prediction of unconfined compressive strength of artificially structured soil", Eng. Comput., 34(1), 175-186. https://doi.org/10.1007/s00366-017-0528-8.
- Survey of Pakistan. (2020), Topographic Map of Pakistan. http://surveyofpakistan.gov.pk.
- Trask, P.D. and Close, J.E.H. (1957), "Effect of clay content on strength of soils", Coastal Engineering Proceedings, Gainesville, Florida, 1(6), 50. https://doi.org/10.9753/icce.v6.50.