DOI QR코드

DOI QR Code

Estimating the unconfined compression strength of low plastic clayey soils using gene-expression programming

  • Muhammad Naqeeb Nawaz (Department of Civil Engineering, Sunchon National University) ;
  • Song-Hun Chong (Department of Civil Engineering, Sunchon National University) ;
  • Muhammad Muneeb Nawaz (NUST Institute of Civil Engineering, National University of Sciences and Technology) ;
  • Safeer Haider (Department of Civil, Environmental and Architectural Engineering, University of Padua) ;
  • Waqas Hassan (NUST Institute of Civil Engineering, National University of Sciences and Technology) ;
  • Jin-Seop Kim (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
  • Received : 2022.11.28
  • Accepted : 2023.01.26
  • Published : 2023.04.25

Abstract

The unconfined compression strength (UCS) of soils is commonly used either before or during the construction of geo-structures. In the pre-design stage, UCS as a mechanical property is obtained through a laboratory test that requires cumbersome procedures and high costs from in-situ sampling and sample preparation. As an alternative way, the empirical model established from limited testing cases is used to economically estimate the UCS. However, many parameters affecting the 1D soil compression response hinder employing the traditional statistical analysis. In this study, gene expression programming (GEP) is adopted to develop a prediction model of UCS with common affecting soil properties. A total of 79 undisturbed soil samples are collected, of which 54 samples are utilized for the generation of a predictive model and 25 samples are used to validate the proposed model. Experimental studies are conducted to measure the unconfined compression strength and basic soil index properties. A performance assessment of the prediction model is carried out using statistical checks including the correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), the relatively squared error (RSE), and external criteria checks. The prediction model has achieved excellent accuracy with values of R, RMSE, MAE, and RSE of 0.98, 10.01, 7.94, and 0.03, respectively for the training data and 0.92, 19.82, 14.56, and 0.15, respectively for the testing data. From the sensitivity analysis and parametric study, the liquid limit and fine content are found to be the most sensitive parameters whereas the sand content is the least critical parameter.

Keywords

Acknowledgement

This work was mainly supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), No. 2021R1C1C1006003. One of the co-author "Jin-Seop Kim" was partially supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF-2021M2E1A1085193) funded by the Ministry of Science and ICT.

References

  1. Abbey, S.J., Ngambi, S. and Ganjian, E. (2017), "Development of strength models for prediction of unconfined compressive strength of cement/byproduct material improved soils", Geotech. Test. J., 40(6), 928-935. https://doi.org/10.1520/GTJ20160138. 
  2. Anandarajah, A. and Chen, J. (1997), "Van der Waals attractive force between clay particles in water and contaminants", Soils Found., 37(2), 27-37. https://doi.org/10.3208/sandf.37.2_27. 
  3. Fattahi, H. and Hasanipanah, M. (2021), "Predicting the shear strength parameters of rock: A comprehensive intelligent approach", Geomech. Eng., 27(5), 511-525. https://doi.org/10.12989/gae.2021.27.5.511. 
  4. Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Vol. 21). Springer. 
  5. Goharzay, M., Noorzad, A., Ardakani, A.M. and Jalal, M. (2017), "A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method", J. Rock Mech. Geotech. Eng., 9(4), 683-693. https://doi.org/10.1016/j.jrmge.2017.03.011. 
  6. Golbraikh, A. and Tropsha, A. (2002), "Beware of q2!", J. Molecular Graphics Model., 20(4), 269-276. https://doi.org/10.1016/S1093-3263(01)00123-1. 
  7. Gunaydin, O., Gokoglu, A. and Fener, M. (2010), "Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks", Adv. Eng. Softw., 41(9), 1115-1123. https://doi.org/10.1016/j.advengsoft.2010.06.008. 
  8. Iqbal, M.F., Liu, Q., Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322. 
  9. Karakan, E., Shimobe, S. and Sezer, A. (2020), "Effect of clay fraction and mineralogy on fall cone results of clay-sand mixtures", Eng. Geol., 279, 105887. https://doi.org/10.1016/j.enggeo.2020.105887. 
  10. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Mass., MIT Press. 
  11. Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219. 
  12. Leong, H.Y., Ong, D.E.L., Sanjayan, J.G. and Nazari, A. (2015), "A genetic programming predictive model for parametric study of factors affecting strength of geopolymers", RSC Advances, 5(104), 85630-85639. https://doi.org/10.1039/C5RA16286F. 
  13. Leong, H.Y., Ong, D.E.L., Sanjayan, J.G., Nazari, A. and Kueh, S.M. (2018), "Effects of significant variables on compressive strength of soil-fly ash geopolymer: variable analytical approach based on neural networks and genetic programming", J. Mater. Civil Eng., 30(7), 4018129. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002246. 
  14. Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583. 
  15. Moayedi, H., Mosallanezhad, M., Rashid, A.S.A., Jusoh, W.A.W., and Muazu, M.A. (2020), "A systematic review and metaanalysis of artificial neural network application in geotechnical engineering: theory and applications", Neural Comput. Appl., 32(2), 495-518. https://doi.org/10.1007/s00521-019-04109-9. 
  16. Mohammadi, M., Fatemi Aghda, S.M., Talkhablou, M. and Cheshomi, A. (2020), "Prediction of the shear strength parameters from easily-available soil properties by means of multivariate regression and artificial neural network methods", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1778194. 
  17. Narendra, B.S., Sivapullaiah, P.V., Suresh, S. and Omkar, S.N. (2006), "Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study", Comput. Geotech., 33(3), 196-208. https://doi.org/10.1016/j.compgeo.2006.03.006. 
  18. Pham, V.N., Oh, E. and Ong, D.E.L. (2022), "Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming", Neural Comput. Appl., 1-19. https://doi.org/10.1007/s00521-022-06931-0. 
  19. Sasmal, S.K. and Behera, R.N. (2021), "Application of artificial intelligence methods for predicting transient response of foundation", Geomec. Eng., 27(3), 197-211. https://doi.org/10.12989/gae.2021.27.3.197. 
  20. Shahmansouri, A.A., Bengar, H.A. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326. 
  21. Sharma, L.K. and Singh, t.N. (2018), "Regression-based models for the prediction of unconfined compressive strength of artificially structured soil", Eng. Comput., 34(1), 175-186. https://doi.org/10.1007/s00366-017-0528-8. 
  22. Survey of Pakistan. (2020), Topographic Map of Pakistan. http://surveyofpakistan.gov.pk. 
  23. Trask, P.D. and Close, J.E.H. (1957), "Effect of clay content on strength of soils", Coastal Engineering Proceedings, Gainesville, Florida, 1(6), 50. https://doi.org/10.9753/icce.v6.50.