DOI QR코드

DOI QR Code

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University) ;
  • Handikajati Kusuma Marjadi (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University)
  • Received : 2022.11.28
  • Accepted : 2023.03.16
  • Published : 2023.04.25

Abstract

Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1F1A1060406). I appreciate the researchers at U.S. Geological Survey: Dr. William F. Waite provided valuable comments on the experimental results, Lee-Gray Boze helped the experiments, and Laura L. Stern took SEM images.

References

  1. Ali, M., Aziz, M., Hamza, M. and Madni, M.F. (2020), "Engineering properties of expansive soil treated with polypropylene fibers", Geomech. Eng., 22(3), 227-236. https://doi.org/10.12989/gae.2020.22.3.227.
  2. ASTM. (2007), "Standard Test Method for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer". ASTM D4542. ASTM International, West Conshohocken, PA.
  3. ASTM. (2011), "Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)", ASTM D2487. ASTM, West Conshohocken, PA.
  4. Ballas, G., Garziglia, S., Sultan, N., Pelleter, E., Toucanne, S., Marsset, T., Riboulot, V. and Ker, S. (2018), "Influence of early diagenesis on geotechnical properties of clay sediments (Romania, Black Sea)", Eng. Geol., 240, 175-188. https://doi.org/10.1016/j.enggeo.2018.04.019.
  5. Barragan, J.M. and de Andres, M. (2015), "Analysis and trends of the world's coastal cities and agglomerations", Ocean Coast. Management, 114, 11-20. https://doi.org/10.1016/j.ocecoaman.2015.06.004.
  6. Burland, J.B. (1990), "30th rankine lecture - on the compressibility and shear-strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
  7. Burland, J.B., Jamiolkowshi, M. and Viggiani, C. (2003), "The stabilisation of the leaning Tower of Pisa", Soils Found., 43(5), 63-80. https://doi.org/10.3208/sandf.43.5_63.
  8. Cerato, A.B. and Lutenegger, A.J. (2004), "Determining intrinsic compressibility of fine-grained soils", J. Geotech. Geoenviron. Eng., 130(8), 872-877. https://doi.org/10.1061/(Asce)1090-0241(2004)130:8(872).
  9. Choo, H., Choi, Y., Kim, Y.U., Lee, W. and Lee, C. (2020), "Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer", Geomech. Eng., 22(4), 329-337. https://doi.org/10.12989/gae.2020.22.4.329.
  10. Fattah, M.Y., Al-Mosawi, M.J. and Al-Zayadi, A.A.O. (2013), "Time dependent behavior of piled raft foundation in clayey soil", Geomech. Eng., 5(1), 17-36. https://doi.org/10.12989/gae.2013.5.1.017.
  11. Geng, W.J., Han, W.X., Yin, J. and Lu, Z.J. (2022), "Salinity effects on the strength and morphological indices of soft marine clay", Scientific Reports, 12(1). ARTN 17563. https://doi.org/10.1038/s41598-022-22627-w.
  12. Haigh, S.K. (2012), "Mechanics of the Casagrande liquid limit test", Can. Geotech. J., 49(9), 1015-1023. https://doi.org/10.1139/T2012-066.
  13. Han, J. (2015), "Principles and practices of ground improvement", John Wiley & Sons, Inc., Hoboken, New Jersey.
  14. Israelachvili, J.N. (2011), "Intermolecular and surface forces", Academic Press. San Diego, CA.
  15. Jang, J. and Santamarina, J.C. (2016), "Fines classification based on sensitivity to pore-fluid chemistry", J. Geotech. Geoenviron. Eng., 142(4), 06015018. Artn 06015018. https://doi.org/10.1061/(Asce)Gt.1943-5606.0001420.
  16. Jang, J. and Santamarina, J.C. (2017), "Closure to "Fines Classification Based on Sensitivity to Pore-Fluid Chemistry" by Junbong Jang and J. Carlos Santamarina", J. Geotech. Geoenviron. Eng., 143(7), 07017013. Artn 07017013. https://doi.org/10.1061/(Asce)Gt.1943-5606.0001694.
  17. Jang, J., Cao, S.C., Stern, L.A., Jung, J. and Waite, W.F. (2018), "Impact of pore fluid chemistry on fine-grained sediment Fabric and compressibility", J. Geophys. Res.-Solid Earth, 123(7), 5495-5514. https://doi.org/10.1029/2018jb015872.
  18. Jang, J. (2022), "Influence of pore fluid chemistry on electrical force-dominated fabrics of fine-grained soils: implications in submerged sediments", J. Korean Soc. Hazard Mitig., 22(3), 151-158. https://doi.org/10.9798/KOSHAM.2022.22.3.151.
  19. Kayabali, K. and Tufenkci, O.O. (2010), "Shear strength of remolded soils at consistency limits", Can. Geotech. J., 47(3), 259-266. https://doi.org/10.1139/T09-095.
  20. Kennett, J. (1982), "Marine geology", Prentice-Hall, Inc. Englewood Cliffs, N.J.
  21. Lambe, T.W., and Whitman, R.V. (1969), "Soil mechanics", John Wiley & Sons. New York.
  22. Leonards, G.A. and Altschaeffl, M. (1964), "Compressibility of clay", J. Soil Mech. Found. Division, 90(5), 133-156. https://doi.org/10.1061/JSFEAQ.0000649
  23. McBride, M.B. and Baveye, P. (2002), "Diffuse double-layer models, long-range forces, and ordering in clay colloids", Soil Sci. Soc. Am. J., 66(4), 1207-1217. https://doi.org/10.2136/sssaj2002.1207
  24. Mitchell, J.K. and Soga, K. (2005), "Fundamentals of soil behavior", John Wiley & Sons, Inc. New Jersey.
  25. Oda, M. (1977), "Co-ordination number and its relation to shear strength of granular material", Soils Found., 17(2), 29-42. https://doi.org/10.3208/sandf1972.17.2_29.
  26. Onyejekwe, S., Kang, X. and Louis, G. (2015), "Assessment of empirical equations for the compression index of fine-grained soils in Missouri", Bull. Eng. Geol. Environ., 74, 705-716. https://doi.org/10.1007/s10064-014-0659-8.
  27. Reynolds, O. (1886), "Dilatancy", Nature, 33(853), 429.
  28. Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", P. R. Soc. A: Math. Phy., 269(1339), 500-527. https://doi.org/10.1098/rspa.1962.0193.
  29. Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), "Soils and waves", John Wiley & Sons. New York.
  30. Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288).
  31. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2020), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087.
  32. Sogami, I. and Ise, N. (1984), "On the electrostatic interaction in macroionic solutions", J. Chem. Phys., 81(12), 6320-6332. https://doi.org/10.1063/1.447541.
  33. Taylor, D.W. (1948), "Fundamentals of soil mechanics", John Wiley&Sons, Inc. New York.
  34. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), "Soil mechanics in engineering practice", John Wiley & Sons, Inc. New York.
  35. Thapa, K.B., Katti, K.S. and Katti, D.R. (2020), "Compression of Na-montmorillonite swelling clay interlayer is influenced by fluid polarity: A steered molecular dynamics study", Langmuir, 36(40), 11742-11753. https://doi.org/10.1021/acs.langmuir.0c01412.
  36. Tiwari, B. and Ajmera, B. (2011), "Consolidation and swelling behavior of major clay minerals and their mixtures", Appl. Clay Sci., 54(3-4), 264-273. https://doi.org/10.1016/j.clay.2011.10.001.
  37. Tiwari, B. and Ajmera, B. (2012), "New correlation equations for compression index of remolded clays", J. Geotech. Geoenviron. Eng., 138(6), 757-762. https://doi.org/10.1061/(Asce)Gt.1943-5606.0000639.
  38. Verwey, E.J.W., Overbeek, J.T.G. and Nes, K.V. (1948), "Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer", Elsevier Pub. Co., xi, 205 p. p. New York.
  39. Won, J., Park, J., Kim, J. and Jang, J. (2021), "Impact of particle sizes, mineralogy and pore fluid chemistry on the plasticity of clayey soils", Sustainability, 13(21). ARTN 11741. https://doi.org/10.3390/su132111741.
  40. Yang, Y. F., Qiao, R., Wang, Y. F. and Sun, S.Y. (2021), "Swelling pressure of montmorillonite with multiple water layers at elevated temperatures and water pressures: A molecular dynamics study", Appl. Clay Sci., 201. ARTN 105924. https://doi.org/10.1016/j.clay.2020.105924.
  41. Young, H.D. and Freedman, R.A. (2004), "University physics", Pearson, San Francisco, CA.
  42. Yu, Y., Wang, Z. and Sun, H.Y. (2020), "Optimal design of stone columns reinforced soft clay foundation considering design robustness", Geomech. Eng., 22(4), 305-318. https://doi.org/10.12989/gae.2020.22.4.305.
  43. Zeng, L.L., Gao, Y.F. and Hong, Z.S. (2021), "Quantitative shear strength-consolidation stress-void ratio interrelations for reconstituted clays", Geotechnique, 71(10), 843-852. https://doi.org/10.1680/jgeot.18.P.262.