Acknowledgement
This research is supported by an Australian Government Research Training Program (RTP) Scholarship.
References
- Abellan-Garcia, J. (2022), "Study of nonlinear relationships between dosage mixture design and the compressive strength of UHPC", Case Stud. Constr. Mater., 17, 01228. https://doi.org/10.1016/j.cscm.2022.e01228.
- Atchley, B.L. (1959), "The effects of fly-ash on dynamic modulus of elasticity of aconcrete mortar", Masters These, Missouri University of Science and Technology, Rolla, MO, USA.
- Bafitlhile, T., Li, Z. and Li, Q. (2018), "Comparison of levenberg marquardt and conjugate gradient descent optimization methods for simulation of streamflow using artificial neural network", Adv. Ecol. Environ. Res., 3(2517-9454), 217-237.
- Bendapudi, S. and Saha, P. (2011), "Contribution of fly ash to the properties of mortar and concrete", Int. J. Earth Sci. Eng., 4, 974-5904.
- Berry, M.J.A. and Linoff, G.S. (2011), Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, 3 rd Edition, John Wiley & Sons, Hoboken, NJ, USA.
- Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054.
- Boger, Z. and Guterman, H. (1997), "Knowledge extraction from artificial neural network models", 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, August.
- Chai, T. and Draxler, R.R. (2014), "Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature", Geosci. Model Dev., 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
- Chi, J., Liu, Y., Wang, V. and Yan, J. (2022), "Performance analysis of three kinds of neural networks in the classification of mask images", J. Phys. Conf. Ser., 2181(1), 012032. https://doi.org/10.1088/1742-6596/2181/1/012032.
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
- Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Mater., 12(6), 983. https://doi.org/10.3390/ma12060983.
- Davidovits, J. (1991), "Geopolymers - Inorganic polymeric new materials", J. Therm. Anal., 37(8), 1633-1656. https://doi.org/10.1007/BF01912193.
- Deb, P., Nath, P. and Sarker, P. (2015), "Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature", 125, 594-600. https://doi.org/10.1016/j.proeng.2015.11.066.
- Duval, R. and Kadri, E.H. (1998), "Influence of silica fume on the workability and the compressive strength of high-performance concretes", Cement Concrete Res., 28(4), 533-547. https://doi.org/10.1016/S0008-8846(98)00010-6.
- Duxson, P., Provis, J.L., Lukey, G.C. and van Deventer, J.S.J. (2007), "The role of inorganic polymer technology in the development of "green concrete"", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
- Far, C. and Far, H. (2018), "Improving energy efficiency of existing residential buildings using effective thermal retrofit of building envelope", Indoor Built Environ., 28(6), 744-760. https://doi.org/10.1177/1420326X18794010.
- Far, H. and Flint, D. (2017), "Significance of using isolated footing technique for residential construction on expansive soils", Front. Struct. Civil Eng., 11(1), 123-129. https://doi.org/10.1007/s11709-016-0372-8.
- Gavin, H.P. (2020), The Levenberg-Marquardt Algorithm for Nonlinear Least Squares Curve-Fitting Problems, Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
- Getahun, M.A., Shitote, S.M. and Abiero Gariy, Z.C. (2018), "Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes", Constr. Build. Mater., 190, 517-525. https://doi.org/10.1016/j.conbuildmat.2018.09.097.
- Ghaboussi, J., Garrett, J.H. and Wu, X. (1991), "Knowledge-based modeling of material behavior with neural networks", J. Eng. Mech., 117(1), 132-153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132).
- Golchubian, A., Marques, O. and Nojoumian, M. (2021), "Photo quality classification using deep learning", Multimed. Tools. Appl., 80(14), 22193-22208. https://doi.org/10.1007/s11042-021-10766-7.
- Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
- Hyndman, R.J. and Koehler, A.B. (2006), "Another look at measures of forecast accuracy", Int. J. Forecast., 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001.
- Jager, S., Allhorn, A. and Biessmann, F. (2021), "A benchmark for data imputation methods", Front Big Data, 4, 693-674. https://doi.org/10.3389/fdata.2021.693674.
- Langkamp, D.L., Lehman, A. and Lemeshow, S. (2010), "Techniques for handling missing data in secondary analyses of large surveys", Acad. Pediatr., 10(3), 205-210, https://doi.org/10.1016/j.acap.2010.01.005.
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Indust. Appl. Math., 11(2), 431-441. https://doi.org/10.1137/0111030.
- McClelland, J.L., Rumelhart, D.E. and Group, P.R. (1987), Parallel Distributed Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological and Biological Models (vol. 2), MIT press, Cambridge, MA, USA.
- Mohammed Ali, A., Zidan, R. and Al-Eliwi, B. (2020), "Evaluation of mechanical properties of high-strength concrete with sustainable materials", IOP Conf. Ser.: Mater. Sci. Eng., 745, 012147. https://doi.org/10.1088/1757-899X/745/1/012147.
- Naser, M.Z. and Alavi, A.H. (2021), "Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences", Arch. Struct. Constr., 2021, 1-25. https://doi.org/10.1007/s44150-021-00015-8.
- Omran, B.A., Chen, Q. and Jin, R. (2014), "Prediction of compressive strength of 'green' concrete using artificial neural networks", 50th Annual International Conference of the Associated Schools of Construction, Washington, D.C.,USA, April.
- Sairamya, N.J., Susmitha, L., Thomas George, S. and Subathra, M.S.P. (2019), "Chapter 12 - Hybrid approach for classification of electroencephalographic signals using time-frequency images with wavelets and texture features", Intelligent Data Analysis for Biomedical Applications, Academic Press, Cambridge, MA, USA.
- Saleh, A., Far, H. and Mok, L. (2018), "Effects of different support conditions on experimental bending strength of thin walled cold formed steel storage upright frames", J. Constr. Steel Res., 150, 1-6. https://doi.org/10.1016/j.jcsr.2018.07.031.
- Seiffert, U. (2002), "Artificial neural networks on massively parallel computer hardware", Neurocomput., 57, 135-150. https://doi.org/10.1016/j.neucom.2004.01.011.
- Sharma, A. and Puvvadi, S. (2012), "Improvement of strength of expansive soil with waste granulated blast furnace slag", GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, March.
- Sheskin, D.J. (2004), Handbook of Parametric and Nonparametric Statistical Procedures, 3rd Edition, Taylor and Francis, Hoboken, NJ, USA.
- Smarzewski, P. (2019), "Influence of silica fume on mechanical and fracture properties of high performance concrete", Procedia Struct. Integr., 17, 5-12. https://doi.org/10.1016/j.prostr.2019.08.002.
- Smith, G.N. (1986), Probability and Statistics in Civil Engineering, Collins Professional and Technical Books, London, UK.
- Tabatabaiefar, H.R. (2016), "Detail design and construction procedure of laminar soil containers for experimental shaking table tests", Int. J. Geotech. Eng., 10(4), 328-336. https://doi.org/10.1080/19386362.2016.1145419.
- Tomosawa, F. and Noguchi, T. (1995), "Relationship between compressive strength and modulus of elasticity of high-strength concrete", J. Struct. Constr. Eng., 60, 1-10. https://doi.org/10.3130/aijs.60.1_8.
- Wilamowski, B.M. and Hao, Y. (2010), "Improved computation for levenberg-marquardt training", IEEE Trans. Neural Netw., 21(6), 930-937. https://doi.org/10.1109/TNN.2010.2045657.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Ziolkowski, P. and Niedostatkiewicz, M. (2019), "Machine learning techniques in concrete mix design", Mater., 12(8), 1256. https://doi.org/10.3390/ma12081256.
- Zupan, J. (1994), "Introduction to artificial neural network (ANN) methods: What they are and how to use them", Acta Chim. Slov., 41, 327-352.