DOI QR코드

DOI QR Code

Virtual resistance with compensation link control strategy for traction network-EMUs systems

  • Xuesong Zhou (Department of Electrical Engineering and Automation, Tianjin University of Technology) ;
  • Yifan Hu (Department of Electrical Engineering and Automation, Tianjin University of Technology) ;
  • Yu Tian (Manufacturing Technology Center, CRRC Tangshan Co., Ltd) ;
  • Tianqi Wang (School of Data Science, City University of Hong Kong)
  • Received : 2022.03.18
  • Accepted : 2022.11.02
  • Published : 2023.04.20

Abstract

A coupled system composed of a traction network and electric multiple units (EMUs) may oscillate or be prone to instability due to the influence of the large number of nonlinear power electronic devices introduced by the EMUs. To solve this problem, this paper proposes a virtual resistance with a compensation link control strategy for the four-quadrant converters of EMUs. First, based on the actual background, input and output impedance models of the coupled system are established, including the output impedance model of the traction network and the input impedance model of the EMUs. Based on the above models, the factors affecting the stability of the coupled system are analyzed by utilizing the impedance matching analysis method and the generalized Nyquist stability criterion (GNC). In the proposed control strategy, virtual resistance is used to adjust the loop gain and to increase system damping, which can improve the stability margin of the system. Virtual resistance can also increase the initial power equivalent to improve system stability. The introduction of the compensation link is to suppress the increasing tendency of the intermediate DC voltage steady-state error caused by the virtual resistance. The parameters of the virtual impedance and the compensation link are designed by forbidden region criterion to meet engineering requirements. With the proposed control strategy, the maximum EMU number to ensure system stability has been significantly increased. Finally, simulations and experiments verify the correctness of the analysis and the effectiveness of the proposed control strategy.

Keywords

Acknowledgement

This work is funded by National Natural Science Foundation of China (No. 51877152); Tianjin Research Innovation Project for Postgraduate Students (No. 2021YJSS090)

References

  1. Lee, H., Lee, C., Jang, G., et al.: Harmonic analysis of the korean high-speed railway using the eight-port representation model. IEEE Trans. Power Del. 21(2), 979-986 (2006) https://doi.org/10.1109/TPWRD.2006.870985
  2. Cui, H., Song, W., Ge, X., et al.: High-frequency resonance suppression of high-speed railways in China. IET Electrical Systems in Transportation. 6(2), 88-95 (2016) https://doi.org/10.1049/iet-est.2014.0031
  3. Tao, H., Hu, H., Zhu, X., et al.: High-frequency damping analysis and compensation method above half PWM sampling frequency for train grid-connected converter. IEEE Trans. Transp. Electrif. PP(PP), 1-1 (2021)
  4. Hu, H., Shao, Y., Tang, L., et al.: Overview of harmonic and resonance in railway electrification systems. IEEE Trans. Ind. Appl. 54(5), 5227-5245 (2018) https://doi.org/10.1109/TIA.2018.2813967
  5. Hu, H., Tao, H., Blaabjerg, F., et al.: Train-network interactions and stability evaluation in high-speed railways-Part I: phenomena and modeling. IEEE Trans. Power Electron. 33(6), 4627-4642 (2018) https://doi.org/10.1109/TPEL.2017.2781880
  6. Liu, Z., Geng, Z., Hu, X.: An approach to suppress low frequency oscillation in the traction network of high-speed railway using passivity-based control. IEEE Trans. Power Syst. 33(4), 3909-3918 (2018) https://doi.org/10.1109/TPWRS.2018.2789450
  7. Liu, Z., Zhang, G., Liao, Y.: Stability research of high-speed railway EMUs and traction network cascade system considering impedance matching. IEEE Trans. Ind. Appl. 52(5), 4315-4326 (2016) https://doi.org/10.1109/TIA.2016.2574770
  8. Zhou, Y., Hu, H., Yang, J., et al.: A novel forbidden-region-based stability criterion in modified sequence-domain for AC grid-converter system. IEEE Trans. Power Electron. 34(4), 2988-2995 (2019) https://doi.org/10.1109/TPEL.2018.2869422
  9. Liao, Y., Liu, Z., Zhang, G., et al.: Vehicle-grid system modeling and stability analysis with forbidden region-based criterion. IEEE Trans. Power Electron. 32(5), 3499-3512 (2017) https://doi.org/10.1109/TPEL.2016.2587726
  10. Heising, C., Oettmeier, M., Bartelt, R., et al. Multivariable pole-placement control design for a single-phase 50-kW, 16.7-Hz railway traction line-side converter. 2009 International Conference on Power Engineering, Energy and Electrical Drives. 273-278 (2009)
  11. Hu, H., Tao, H., Wang, X., et al.: Train-network interactions and stability evaluation in high-speed railways-Part II: influential factors and verifications. IEEE Trans. Power Electron. 33(6), 4643-4659 (2018) https://doi.org/10.1109/TPEL.2017.2781879
  12. Sergio Andres Castano Giraldo, Rodolfo Cesar Costa Flesch, Julio Elias Normey-Rico, et al.: A method for designing decoupled filtered smith predictor for square MIMO systems with multiple time delays. IEEE Trans. Ind. Appl. 54(6), 6439-6449 (2018) https://doi.org/10.1109/TIA.2018.2849365
  13. Choi, W., Lee, W., Han, D., et al.: New configuration of multifunctional grid-connected inverter to improve both current-based and voltage-based power quality. IEEE Trans. Ind. Appl. 54(6), 6374-6382 (2018) https://doi.org/10.1109/TIA.2018.2861737
  14. Azghandi, M.-A., Barakati, M.-S., Yazdani, A.: Passivity-based design of a fractional-order virtual capacitor for active damping of multi-paralleled grid-connected current-source inverters. IEEE Trans. Power Electron. PP(PP), 1-1 (2022)
  15. Zhou, Y., Hu, H., Yang, X., et al.: Low frequency oscillation traceability and suppression in railway electrification systems. IEEE Trans. Ind. Appl. 55(6), 7699-7711 (2019) https://doi.org/10.1109/TIA.2019.2935194
  16. Zhang, G., Liu, Z., Yao, S., et al.: Suppression of low-frequency oscillation in traction network of high-speed railway based on auto-disturbance rejection control. IEEE Trans. Transp. Electrif. 2(2), 244-255 (2016) https://doi.org/10.1109/TTE.2016.2554468
  17. Yang, Y., Li, C., Xu, J., et al.: Virtual inertia control strategy for improving damping performance of DC microgrid with negative feedback effect. IEEE J. Emerg. Sel. Topics Power Electron. 9(2), 1241-1257 (2021) https://doi.org/10.1109/JESTPE.2020.2998812
  18. Wang, H., Wu, M., Sun, J.: Analysis of low-frequency oscillation in electric railways based on small-signal modeling of vehicle-grid system in dq frame. IEEE Trans. Power Electron. 30(9), 5318-5330 (2015) https://doi.org/10.1109/TPEL.2015.2388796
  19. Wu, S., Liu, Z., Li, Z., et al.: Impedance modeling and stability analysis in vehicle-grid system with CHB-STATCOM. IEEE Trans. Power Syst. 35(4), 3026-3039 (2020) https://doi.org/10.1109/TPWRS.2020.2963897
  20. Wu, S., Liu, Z.: Low-frequency stability analysis of vehicle-grid system with active power filter based on dq-frame impedance. IEEE Trans. Power Electron. 36(8), 9027-9040 (2021) https://doi.org/10.1109/TPEL.2021.3049145
  21. Liu, Z., Wang, Y., Liu, S., et al.: An approach to suppress low-frequency oscillation by combining extended state observer with model predictive control of EMUs rectifier. IEEE Trans. Power Electron. 34(10), 10282-10297 (2019)
  22. Kim, H., Son, J., Lee, J.: A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans. Ind. Electron. 58(9), 4069-4077 (2011) https://doi.org/10.1109/TIE.2010.2098357
  23. Shadmand, M.-B., Balog, R.-S., Abu-Rub, H.: Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans. Energy Convers. 29(4), 913-921 (2014) https://doi.org/10.1109/TEC.2014.2362934
  24. Zhang, H., Wang, X., Mehrabankhomartash, M., et al.: Harmonic stability assessment of multiterminal DC (MTDC) systems based on the hybrid AC/DC admittance model and determinant-based GNC. IEEE Trans. Power Electron. 37(2), 1653-1665 (2022)
  25. Shen, L., Chen, J., Jin, Z., et al.: Resonating Power Decoupling using multifunctional bidirectional DC/DC converter in hybrid railway traction application. IEEE Trans. Power Electron. 37(1), 404-415 (2022) https://doi.org/10.1109/TPEL.2021.3100703
  26. Prakash, S., Singh, J., Behera, R., et al.: A type-3 modified SOGI-PLL with grid disturbance rejection capability for single-phase grid-tied converters. IEEE Trans. Ind. Appl. 57(4), 4242-4252 (2021) https://doi.org/10.1109/TIA.2021.3079122
  27. Zhang, H., Liu, Z., Wu, S., et al.: Input impedance modeling and verification of single-phase voltage source converters based on harmonic linearization. IEEE Trans. Power Electron. 34(9), 8544-8554 (2019) https://doi.org/10.1109/TPEL.2018.2883470