Acknowledgement
The authors received no financial support for the research described in this paper.
References
- Agaiby, S. and Ahmed, S. (2016), "Learning from failures: A geotechnical perspective", International Conference on Forensic Civil Engineering, Nagpur, India, January.
- Alnaggar, M. and Bhanot, N. (2018), "A machine learning approach for the identification of the Lattice Discrete Particle Model parameters", Eng. Frac. Mech., 197, 160-175. https://doi.org/10.1016/j.engfracmech.2018.04.041.
- Ardiaca, D.H. (2009), "Mohr-Coulomb parameters for modelling of concrete structures", Plaxis Bull., 25, 12-15.
- Balki, I., Amirabadi, A., Levman, J., Martel, A.L., Emersic, Z., Meden, B., Garcia-Pedrero, A., Ramirez, S.C., Kong, D. and Moody, A.R. (2019), "Sample-size determination methodologies for machine learning in medical imaging research: A systematic review", Can. Assoc. Radiol. J., 70(4), 344-353. https://doi.org/10.1016/j.carj.2019.06.002.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Budhu, M. (2020), Soil Mechanics and Foundations, John Wiley & Sons, Hoboken, NJ, USA.
- Deb, D. and Das, K.C. (2010), "Extended finite element method for the analysis of discontinuities in rock masses", Geotech. Geol. Eng., 28, 643-659. https://doi.org/10.1007/s10706-010-9323-7.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Elmo, D. and Mitelman, A. (2021), "Modeling concrete fracturing using a hybrid finite-discrete element method", Comput. Concrete, 27(4), 297-304. https://doi.org/10.12989/cac.2021.27.4.297.
- Elmo, D., Mitelman, A. and Yang, B. (2022), "Examining rock engineering knowledge through a philosophical lens", Geosci., 12(4), 174. https://doi.org/10.3390/geosciences12040174.
- Geron, A. (2022), Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, Inc., Sebastopol, CA, USA.
- Jaky, J. (1948), "Pressure in soils", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, June.
- Kelleher, J.D. and Tierney, B. (2018), Data Science, MIT Press, Cambridge, MA, USA.
- Lees, A. (2013), Geotechnical Finite Element Analysis, ICE publishing, London, UK.
- Lelovic, S. and Vasovic, D. (2020), "Determination of MohrCoulomb parameters for modelling of concrete", Crystals, 10(9), 808. https://doi.org/10.3390/cryst10090808.
- Liu, L., Zhou, W. and Gutierrez, M. (2022), "Effectiveness of predicting tunneling-induced ground settlements using machine learning methods with small datasets", J. Rock Mech. Geotech. Eng., 14(4), 1028-1041. https://doi.org/10.1016/j.jrmge.2021.08.018.
- Mitelman, A. and Elmo, D. (2018), "A proposed probabilistic analysis methodology for tunnel support cost estimation depending on the construction method", 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
- Pul, S., Ghaffari, A., O ztekin, E., Husem, M. and Demir, S. (2017), "Experimental determination of cohesion and internal friction angle on conventional concretes", ACI Mater. J., 114(3), 407-416. http://doi.org/10.14359/51689676.
- Rao, V.V.S. and Babu, G.L.S. (2016), Forensic Geotechnical Engineering, Springer New Delhi, New Delhi, India.
- Rocscience Inc. (1998), Phase2, Rocscience Inc., Toronto, Canada.
- Rudin, C. (2019), "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead", Nat. Mach. Intell., 1(5), 206-215. https://doi.org/10.1038/s42256-019-0048-x.
- Salazar, F. and Hariri-Ardebili, M.A. (2022), "Coupling machine learning and stochastic finite element to evaluate heterogeneous concrete infrastructure", Eng. Struct., 260, 114190. https://doi.org/10.1016/j.engstruct.2022.114190.
- Sherzer, G.L., Ye, G., Schlangen, E. and Kovler, K. (2022), "The role of porosity on degradation of concrete under severe internal and external brine attack in confined conditions", Constr. Build. Mater., 341, 127721. https://doi.org/10.1016/j.conbuildmat.2022.127721.
- Yarkoni, T. and Westfall, J. (2017), "Choosing prediction over explanation in psychology: Lessons from machine learning", Perspect. Psychol. Sci., 12(6), 1100-1122. https://doi.org/10.1177/1745691617693393.