DOI QR코드

DOI QR Code

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun (School of Agricultural Civil, and Bio-Industrial Engineering, Kyungpook National University) ;
  • Mi Jeong Seo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • WooJin Han (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sang Yeob Kim (Department of Fire and Disaster Prevention, Konkuk University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2022.10.10
  • 심사 : 2023.01.29
  • 발행 : 2023.04.25

초록

Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

참고문헌

  1. ASTM C192 (2020), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA. 
  2. ASTM C39 (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. 
  3. ASTM C469 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA. 
  4. Byun, Y.H., Han, W., Tutumluer, E. and Lee, J.S. (2016), "Elastic wave characterization of controlled low-strength material using embedded piezoelectric transducers", Constr. Build. Mater., 127, 210-219. https://doi.org/10.1016/j.conbuildmat.2016.09.113. 
  5. Carette, J. and Staquet, S. (2015), "Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement", Constr. Build. Mater., 94, 196-208. https://doi.org/10.1016/j.conbuildmat.2015.06.054. 
  6. Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties self-compacting concrete", Build. Environ., 42, 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012. 
  7. Flores, R.V.D., Emidio, G.D. and Van Impe, W.F. (2009), "Small-strain shear modulus and strength increase of cement-treated clay", Geotech. Test J., 33(1), 1-10. http://doi.org/10.1520/GTJ102354. 
  8. Han, W., Lee, J.S. and Byun, Y.H. (2021), "Volume, strength, and stiffness characteristics of expandable foam grout", Constr. Build. Mater., 274, 122013. https://doi.org/10.1016/j.conbuildmat.2020.122013. 
  9. Han, W., Lee, J.S., Jeong, S.H., Lim, D.S. and Byun, Y.H. (2021), "Evaluation of engineering properties of expandable foam grout with admixture content", Constr. Build. Mater., 293, 123488. https://doi.org/10.1016/j.conbuildmat.2021.123488. 
  10. Heo, O., Yoon, Y. and Do, J. (2022), "Effect of slime on engineering characteristics of large-diameter cast-in-place pile", KSCE J. Civil Eng., 26, 88-95. https://doi.org/10.1007/s12205-021-0343-z. 
  11. Hong, W.P. and Chai, S.G. (2003), "The skin friction capacity of SDA (separated doughnut auger) pile", Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May. 
  12. Hong, W.P., Lee, J.H. and Chai, S.G. (2008), "Bearing capacity of SDA augered piles in various grounds depending on watercement ratio of cement milk", J. Korean Geotech. Soc., 24(5), 37-54. 
  13. Horpibulsuk, S., Miura, N. and Nagarj, T. (2003), "Assessment of strength development in cement-admixed high water content clays with Abram's law as basis", Geotech., 53(4), 439-444. https://doi.org/10.1680/geot.2003.53.4.439. 
  14. Horpibulsuk, S., Rachan, R., Chinkulkijiwat, A., Raksachon, Y. and Suddeepong, A. (2010), "Analysis of strength development in cement-stabilized silty clay from microstructural considerations", Const. Build. Mater., 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011. 
  15. Huang, C.Y. and Feldman, R.F. (1985), "Influence of silica fume on the microstructural development in cement mortars", Cement Concrete Res., 15, 285-294. https://doi.org/10.1016/0008-8846(85)90040-7. 
  16. Jurowski, K. and Grzeszczyk, S. (2015), "The influence of concrete composition on Young's modulus", Procedia Eng., 108, 584-591. https://doi.org/10.1016/j.proeng.2015.06.181. 
  17. Karkee, M.B. (1999), "Developments in low noise and low vibration methods of pile installation in Japan", Proceedings of the 11th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, August. 
  18. Khandelwal, M. and Ranjith, P.G. (2013), "Behaviour of brittle material in multiple loading rates under uniaxial compression", Geotech. Geol. Eng., 31, 1305-1315. https://doi.org/10.1007/s10706-013-9651-5. 
  19. Kim, D., Jeong, S. and Park, J. (2020), "Analysis of shaft resistance of the steel pipe prebored and precast piles based on filed load-transfer curves and finite element method", Soils Found., 60, 478-495. https://doi.org/10.1016/j.sandf.2020.03.011. 
  20. Kocherla, A., Duddi, M. and Subramaniam, K.V.L. (2021), "Smart embedded PZT sensor for in-situ elastic property and vibration measurements in concrete", Measure., 173, 108629. https://doi.org/10.1016/j.measurement.2020.108629. 
  21. Kog, Y.C. (2009), "Integrity problem of large-diameter bored piles", J. Geotech. Geoenviron. Eng., 135(2), 237-245. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(237). 
  22. Lee, F.H., Lee, Y., Chew, S.H. and Yong, K.Y. (2005), "Strength and modulus of marine clay-cement mixes", J. Geotech. Geoenviron. Eng., 131(2), 178-186. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(178). 
  23. Lee, I.M., Kim, J.S., Yoon, H.K. and Lee, J.S. (2014), "Evaluation of compressive strength and stiffness of grouted soils by using elastic waves", Sci. World. J., 2014, 215804. https://doi.org/10.1155/2014/215804. 
  24. Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: Performance and signal interpretation", J. Geotech. Geoenviron. Eng., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063). 
  25. Liu, S., Zhu, J., Seraj, S., Cano, R. and Juenger, M. (2014), "Monitoring setting and hardening process of mortar and concrete using ultrasonic shear waves", Constr. Build. Mater., 72, 248-255. https://doi.org/10.1016/j.conbuildmat.2014.08.044. 
  26. Loh, C.K., Tan, T.S., Yong, K.Y. and Wee, T.H. (1998), "An experimental study on bleeding and channelling of cement paste and mortar", Adv. Cement Res., 10(1), 1-16. https://doi.org/10.1680/adcr.1998.10.1.1. 
  27. Makoond, N., Cabane, A., Pela, L. and Molins, C. (2020), "Relationship between the static and dynamic elastic modulus of brick masonry constituents", Constr. Build. Mater., 259, 120386. https://doi.org/10.1016/j.conbuildmat.2020.120386. 
  28. Marques, A.I., Morais, J., Morais, P., Veiga, M.R., Santos, C., Candeias, P. and Ferreira, J.G. (2020), "Modulus of elasticity of mortars: static and dynamic analyses", Constr. Build. Mater., 232, 117216. https://doi.org/10.1016/j.conbuildmat.2019.117216. 
  29. Motuzov, Y.Y., Ibragimov, M.N. and Semkin, V.V. (2004), "Experience with stabilization of weak slimy soils", Soil Mech. Found. Eng., 41, 13-17. https://doi.org/10.1023/B:SMAF.0000024964.14537.6d. 
  30. Nadeau, J.C. (2002), "Water-cement ratio gradients in mortars and corresponding effective elastic properties", Cement Concrete Res., 32, 481-490. https://doi.org/10.1016/S0008-8846(01)00710-4. 
  31. Nagaraj, T.S. and Banu, Z. (1996), "Generalization of Abrams' law", Cement Concrete Res., 26(6), 933-942. https://doi.org/10.1016/0008-8846(96)00065-8. 
  32. Naji, S., Karray, M. and Khayat, K.H. (2017), "Versatility of piezoelectric ring actuator technique (P-RAT) for characterization of cement paste and mortar", Adv. Civil Eng. Mater., 6(1), 189-212. https://doi.org/10.1520/ACEM20160039. 
  33. Neville, A.M. (1995), Properties of Concrete, 4 th Edition, Longman, London, UK. 
  34. Nwokoye, D.N. (1974), "Assessment of the elastic moduli of cement paste and mortar phases in concrete from pulse velocity tests", Cement Concrete Res., 4, 641-655. https://doi.org/10.1016/0008-8846(74)90012-X. 
  35. Ohdaira, E. and Masuzuwa, N. (2000), "Water content and its effect on ultrasound propagation in concrete - the possibility of NDE", Ultrason., 38, 546-552. https://doi.org/10.1016/S0041-624X(99)00158-4. 
  36. Olugbenga, A. (2007), "Effects of varying curing age and water/cement ratio on the elastic properties of laterized concrete", Civil Eng. Dimens., 9(2), 85-89. https://doi.org/10.9744/ced.9.2.pp.%2085-89. 
  37. Park, H.K. and Chang, Y.C. (2013), "Prediction of cement infiltration depth in coarse-grained soil", KSCE J. Civil Eng., 17(5), 886-894. https://doi.org/10.1007/s12205-013-0288-y. 
  38. Philippidis, T.P. and Aggelis, D.G. (2005), "Experimental study of wave dispersion and attenuation in concrete", Ultrason., 43, 584-595. https://doi.org/10.1016/j.ultras.2004.12.001. 
  39. Pichler, B. and Hellmich, C. (2011), "Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model", Cement Concrete Res., 4, 467-476. https://doi.org/10.1016/j.cemconres.2011.01.010. 
  40. Popovics, S. (1975), "Verification of relationship between mechanical properties of concrete-like materials", Mater. Struct., 8(45), 183-191. https://doi.org/10.1007/BF02475168. 
  41. Popovics, S. (2001), "Analysis of the concrete strength versus ultrasonic pulse velocity relationship", Mater. Eval., 59(2), 123-130. 
  42. Rao, G.A. (2001), "Generalization of Abrams' law for cement mortars", Cement Concrete Res., 31, 495-502. https://doi.org/10.1016/S0008-8846(00)00473-7. 
  43. Seo, M.J., Han, K., Park, J.B., Jeong, K.H. and Lee, J.S. (2021), "End bearing capacity of embedded pile with inclined base plate: Field dynamic and static tests", Geomech. Eng., 26(3), 261-274. https://doi.org/10.12989/gae.2021.26.3.261. 
  44. Seo, M.J., Park, J.B., Lee, D. and Lee, J.S. (2022), "Loadsettlement curve combining base and shaft resistance considering curing of cement paste", Geomech. Eng., 29(4), 407-420. https://doi.org/10.12989/gae.2022.29.4.407. 
  45. Shrivastava, A.K., Jain, D. and Vishwakarma, S. (2016), "Frictional resistance of drilling fluids as a borehole stabilizers", Int. J. Geo-Eng., 7(1), 12. https://doi.org/10.1186/s40703-016-0026-7. 
  46. Singh, S.B., Munjal, P. and Thammishetti, N. (2015), "Role of water/cement ratio on strength development of cement mortar", J. Build. Eng., 4, 94-100. https://doi.org/10.1016/j.jobe.2015.09.003. 
  47. Swamy, N. and Rigby, G. (1971), "Dynamic properties of hardened paste, mortar and concrete", Mater. Struct., 4, 13-40. https://doi.org/10.1007/BF02473927. 
  48. Thomaz, W.A., Miyaji, D.Y. and Possan, E. (2021), "Comparative study of dynamic and static Young's modulus of concrete containing basaltic aggregates", Case Stud. Constr. Mater., 15, e00645. https://doi.org/10.1016/j.cscm.2021.e00645. 
  49. Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrason., 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001. 
  50. Trtnik, G., Turk, G., Kavcic, F. and Bosiljkov, V.B. (2008), "Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste", Cement Concrete Res., 38, 1336-1342. https://doi.org/10.1016/j.cemconres.2008.08.003. 
  51. Truong, Q.H., Lee, C., Kim, Y.U. and Lee, J.S. (2012), "Small strain stiffness of salt-cemented granular media under low confinement", Geotech., 62(10), 949-953. https://doi.org/10.1680/geot.10.T.004. 
  52. Wang, E.Z. and Shrive, N.G. (1995), "Brittle fracture in compression: Mechanisms, models and criteria", Eng. Fract. Mech., 52(6), 1107-1126. https://doi.org/10.1016/0013-7944(95)00069-8. 
  53. Yim, H.J., Bae, Y.H. and Jun, Y. (2021), "Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements", Constr. Build. Mater., 303, 124508. https://doi.org/10.1016/j.conbuildmat.2021.124508. 
  54. Zhou, J., Yu, J., Gong, X., El Naggar, M.H. and Zhang, R. (2020), "The effect of cemented soil strength on the frictional capacity of concrete pile-cemented soil interface", Acta Geotech., 15, 3271-3282. https://doi.org/10.1007/s11440-020-00915-x. 
  55. Zhou, Y., Gao, J., Sun, Z. and Qu, W. (2015), "A fundamental study on compressive strength, static and dynamic elastic moduli of young concrete", Constr. Build. Mater., 98, 137-145. https://doi.org/10.1016/j.conbuildmat.2015.08.110. 
  56. Zhu, J., Cao, J.N., Bate, B. and Khayat, K.H. (2018), "Determination of mortar setting times using shear wave velocity evolution curves measured by the bender element technique", Cement Concrete Res., 106, 1-11. https://doi.org/10.1016/j.cemconres.2018.01.013. 
  57. Zhu, J., Kee, S.H., Han, D., and Tsai, Y.T. (2011), "Effects of air voids on ultrasonic wave propagation in early age cement pastes", Cement Concrete Res., 41, 872-881. https://doi.org/10.1016/j.cemconres.2011.04.005.