Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).
References
- ASTM C192 (2020), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA.
- ASTM C39 (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
- ASTM C469 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
- Byun, Y.H., Han, W., Tutumluer, E. and Lee, J.S. (2016), "Elastic wave characterization of controlled low-strength material using embedded piezoelectric transducers", Constr. Build. Mater., 127, 210-219. https://doi.org/10.1016/j.conbuildmat.2016.09.113.
- Carette, J. and Staquet, S. (2015), "Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement", Constr. Build. Mater., 94, 196-208. https://doi.org/10.1016/j.conbuildmat.2015.06.054.
- Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties self-compacting concrete", Build. Environ., 42, 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012.
- Flores, R.V.D., Emidio, G.D. and Van Impe, W.F. (2009), "Small-strain shear modulus and strength increase of cement-treated clay", Geotech. Test J., 33(1), 1-10. http://doi.org/10.1520/GTJ102354.
- Han, W., Lee, J.S. and Byun, Y.H. (2021), "Volume, strength, and stiffness characteristics of expandable foam grout", Constr. Build. Mater., 274, 122013. https://doi.org/10.1016/j.conbuildmat.2020.122013.
- Han, W., Lee, J.S., Jeong, S.H., Lim, D.S. and Byun, Y.H. (2021), "Evaluation of engineering properties of expandable foam grout with admixture content", Constr. Build. Mater., 293, 123488. https://doi.org/10.1016/j.conbuildmat.2021.123488.
- Heo, O., Yoon, Y. and Do, J. (2022), "Effect of slime on engineering characteristics of large-diameter cast-in-place pile", KSCE J. Civil Eng., 26, 88-95. https://doi.org/10.1007/s12205-021-0343-z.
- Hong, W.P. and Chai, S.G. (2003), "The skin friction capacity of SDA (separated doughnut auger) pile", Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May.
- Hong, W.P., Lee, J.H. and Chai, S.G. (2008), "Bearing capacity of SDA augered piles in various grounds depending on watercement ratio of cement milk", J. Korean Geotech. Soc., 24(5), 37-54.
- Horpibulsuk, S., Miura, N. and Nagarj, T. (2003), "Assessment of strength development in cement-admixed high water content clays with Abram's law as basis", Geotech., 53(4), 439-444. https://doi.org/10.1680/geot.2003.53.4.439.
- Horpibulsuk, S., Rachan, R., Chinkulkijiwat, A., Raksachon, Y. and Suddeepong, A. (2010), "Analysis of strength development in cement-stabilized silty clay from microstructural considerations", Const. Build. Mater., 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011.
- Huang, C.Y. and Feldman, R.F. (1985), "Influence of silica fume on the microstructural development in cement mortars", Cement Concrete Res., 15, 285-294. https://doi.org/10.1016/0008-8846(85)90040-7.
- Jurowski, K. and Grzeszczyk, S. (2015), "The influence of concrete composition on Young's modulus", Procedia Eng., 108, 584-591. https://doi.org/10.1016/j.proeng.2015.06.181.
- Karkee, M.B. (1999), "Developments in low noise and low vibration methods of pile installation in Japan", Proceedings of the 11th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, August.
- Khandelwal, M. and Ranjith, P.G. (2013), "Behaviour of brittle material in multiple loading rates under uniaxial compression", Geotech. Geol. Eng., 31, 1305-1315. https://doi.org/10.1007/s10706-013-9651-5.
- Kim, D., Jeong, S. and Park, J. (2020), "Analysis of shaft resistance of the steel pipe prebored and precast piles based on filed load-transfer curves and finite element method", Soils Found., 60, 478-495. https://doi.org/10.1016/j.sandf.2020.03.011.
- Kocherla, A., Duddi, M. and Subramaniam, K.V.L. (2021), "Smart embedded PZT sensor for in-situ elastic property and vibration measurements in concrete", Measure., 173, 108629. https://doi.org/10.1016/j.measurement.2020.108629.
- Kog, Y.C. (2009), "Integrity problem of large-diameter bored piles", J. Geotech. Geoenviron. Eng., 135(2), 237-245. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(237).
- Lee, F.H., Lee, Y., Chew, S.H. and Yong, K.Y. (2005), "Strength and modulus of marine clay-cement mixes", J. Geotech. Geoenviron. Eng., 131(2), 178-186. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(178).
- Lee, I.M., Kim, J.S., Yoon, H.K. and Lee, J.S. (2014), "Evaluation of compressive strength and stiffness of grouted soils by using elastic waves", Sci. World. J., 2014, 215804. https://doi.org/10.1155/2014/215804.
- Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: Performance and signal interpretation", J. Geotech. Geoenviron. Eng., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
- Liu, S., Zhu, J., Seraj, S., Cano, R. and Juenger, M. (2014), "Monitoring setting and hardening process of mortar and concrete using ultrasonic shear waves", Constr. Build. Mater., 72, 248-255. https://doi.org/10.1016/j.conbuildmat.2014.08.044.
- Loh, C.K., Tan, T.S., Yong, K.Y. and Wee, T.H. (1998), "An experimental study on bleeding and channelling of cement paste and mortar", Adv. Cement Res., 10(1), 1-16. https://doi.org/10.1680/adcr.1998.10.1.1.
- Makoond, N., Cabane, A., Pela, L. and Molins, C. (2020), "Relationship between the static and dynamic elastic modulus of brick masonry constituents", Constr. Build. Mater., 259, 120386. https://doi.org/10.1016/j.conbuildmat.2020.120386.
- Marques, A.I., Morais, J., Morais, P., Veiga, M.R., Santos, C., Candeias, P. and Ferreira, J.G. (2020), "Modulus of elasticity of mortars: static and dynamic analyses", Constr. Build. Mater., 232, 117216. https://doi.org/10.1016/j.conbuildmat.2019.117216.
- Motuzov, Y.Y., Ibragimov, M.N. and Semkin, V.V. (2004), "Experience with stabilization of weak slimy soils", Soil Mech. Found. Eng., 41, 13-17. https://doi.org/10.1023/B:SMAF.0000024964.14537.6d.
- Nadeau, J.C. (2002), "Water-cement ratio gradients in mortars and corresponding effective elastic properties", Cement Concrete Res., 32, 481-490. https://doi.org/10.1016/S0008-8846(01)00710-4.
- Nagaraj, T.S. and Banu, Z. (1996), "Generalization of Abrams' law", Cement Concrete Res., 26(6), 933-942. https://doi.org/10.1016/0008-8846(96)00065-8.
- Naji, S., Karray, M. and Khayat, K.H. (2017), "Versatility of piezoelectric ring actuator technique (P-RAT) for characterization of cement paste and mortar", Adv. Civil Eng. Mater., 6(1), 189-212. https://doi.org/10.1520/ACEM20160039.
- Neville, A.M. (1995), Properties of Concrete, 4 th Edition, Longman, London, UK.
- Nwokoye, D.N. (1974), "Assessment of the elastic moduli of cement paste and mortar phases in concrete from pulse velocity tests", Cement Concrete Res., 4, 641-655. https://doi.org/10.1016/0008-8846(74)90012-X.
- Ohdaira, E. and Masuzuwa, N. (2000), "Water content and its effect on ultrasound propagation in concrete - the possibility of NDE", Ultrason., 38, 546-552. https://doi.org/10.1016/S0041-624X(99)00158-4.
- Olugbenga, A. (2007), "Effects of varying curing age and water/cement ratio on the elastic properties of laterized concrete", Civil Eng. Dimens., 9(2), 85-89. https://doi.org/10.9744/ced.9.2.pp.%2085-89.
- Park, H.K. and Chang, Y.C. (2013), "Prediction of cement infiltration depth in coarse-grained soil", KSCE J. Civil Eng., 17(5), 886-894. https://doi.org/10.1007/s12205-013-0288-y.
- Philippidis, T.P. and Aggelis, D.G. (2005), "Experimental study of wave dispersion and attenuation in concrete", Ultrason., 43, 584-595. https://doi.org/10.1016/j.ultras.2004.12.001.
- Pichler, B. and Hellmich, C. (2011), "Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model", Cement Concrete Res., 4, 467-476. https://doi.org/10.1016/j.cemconres.2011.01.010.
- Popovics, S. (1975), "Verification of relationship between mechanical properties of concrete-like materials", Mater. Struct., 8(45), 183-191. https://doi.org/10.1007/BF02475168.
- Popovics, S. (2001), "Analysis of the concrete strength versus ultrasonic pulse velocity relationship", Mater. Eval., 59(2), 123-130.
- Rao, G.A. (2001), "Generalization of Abrams' law for cement mortars", Cement Concrete Res., 31, 495-502. https://doi.org/10.1016/S0008-8846(00)00473-7.
- Seo, M.J., Han, K., Park, J.B., Jeong, K.H. and Lee, J.S. (2021), "End bearing capacity of embedded pile with inclined base plate: Field dynamic and static tests", Geomech. Eng., 26(3), 261-274. https://doi.org/10.12989/gae.2021.26.3.261.
- Seo, M.J., Park, J.B., Lee, D. and Lee, J.S. (2022), "Loadsettlement curve combining base and shaft resistance considering curing of cement paste", Geomech. Eng., 29(4), 407-420. https://doi.org/10.12989/gae.2022.29.4.407.
- Shrivastava, A.K., Jain, D. and Vishwakarma, S. (2016), "Frictional resistance of drilling fluids as a borehole stabilizers", Int. J. Geo-Eng., 7(1), 12. https://doi.org/10.1186/s40703-016-0026-7.
- Singh, S.B., Munjal, P. and Thammishetti, N. (2015), "Role of water/cement ratio on strength development of cement mortar", J. Build. Eng., 4, 94-100. https://doi.org/10.1016/j.jobe.2015.09.003.
- Swamy, N. and Rigby, G. (1971), "Dynamic properties of hardened paste, mortar and concrete", Mater. Struct., 4, 13-40. https://doi.org/10.1007/BF02473927.
- Thomaz, W.A., Miyaji, D.Y. and Possan, E. (2021), "Comparative study of dynamic and static Young's modulus of concrete containing basaltic aggregates", Case Stud. Constr. Mater., 15, e00645. https://doi.org/10.1016/j.cscm.2021.e00645.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrason., 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.
- Trtnik, G., Turk, G., Kavcic, F. and Bosiljkov, V.B. (2008), "Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste", Cement Concrete Res., 38, 1336-1342. https://doi.org/10.1016/j.cemconres.2008.08.003.
- Truong, Q.H., Lee, C., Kim, Y.U. and Lee, J.S. (2012), "Small strain stiffness of salt-cemented granular media under low confinement", Geotech., 62(10), 949-953. https://doi.org/10.1680/geot.10.T.004.
- Wang, E.Z. and Shrive, N.G. (1995), "Brittle fracture in compression: Mechanisms, models and criteria", Eng. Fract. Mech., 52(6), 1107-1126. https://doi.org/10.1016/0013-7944(95)00069-8.
- Yim, H.J., Bae, Y.H. and Jun, Y. (2021), "Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements", Constr. Build. Mater., 303, 124508. https://doi.org/10.1016/j.conbuildmat.2021.124508.
- Zhou, J., Yu, J., Gong, X., El Naggar, M.H. and Zhang, R. (2020), "The effect of cemented soil strength on the frictional capacity of concrete pile-cemented soil interface", Acta Geotech., 15, 3271-3282. https://doi.org/10.1007/s11440-020-00915-x.
- Zhou, Y., Gao, J., Sun, Z. and Qu, W. (2015), "A fundamental study on compressive strength, static and dynamic elastic moduli of young concrete", Constr. Build. Mater., 98, 137-145. https://doi.org/10.1016/j.conbuildmat.2015.08.110.
- Zhu, J., Cao, J.N., Bate, B. and Khayat, K.H. (2018), "Determination of mortar setting times using shear wave velocity evolution curves measured by the bender element technique", Cement Concrete Res., 106, 1-11. https://doi.org/10.1016/j.cemconres.2018.01.013.
- Zhu, J., Kee, S.H., Han, D., and Tsai, Y.T. (2011), "Effects of air voids on ultrasonic wave propagation in early age cement pastes", Cement Concrete Res., 41, 872-881. https://doi.org/10.1016/j.cemconres.2011.04.005.