DOI QR코드

DOI QR Code

가시광선과 원적외선 듀얼카메라의 영상 정합도 향상을 위한 동축광학계 설계 및 분석

Design and Analysis of Coaxial Optical System for Improvement of Image Fusion of Visible and Far-infrared Dual Cameras

  • 투고 : 2023.04.06
  • 심사 : 2023.05.16
  • 발행 : 2023.06.25

초록

본 논문에서는 가시광선과 원적외선 전반의 파장대역에 걸쳐 사용 가능한 동축 듀얼카메라를 설계 및 분석하였다. 광학계는 빔 스플리터를 이용한 동축광학계 시스템으로 설계되었으며, 가시광선 광학계에서 적외선으로 인한 열 전달을 최소화하기 위해 hot mirror 타입의 빔 스플리터를 사용하였다. 원적외선 카메라는 비냉각형 검출기로 640×480의 센서 배열을 가지고, 가시광선은 1,945×1,097의 센서를 사용한다. 최적화 과정을 거친 후 최종 설계된 광학계의 정합도는 90% 이상이며, 기존에 존재하던 듀얼카메라에 비해 정합도가 향상된 효율적인 설계 결과를 얻었고, 테스트를 통해 향상된 정합도를 확인하였다.

In this paper, we designed a coaxial dual camera incorporating two optical systems-one for the visible rays and the other for far-infrared ones-with the aim of capturing images in both wavelength ranges. The far-infrared system, which uses an uncooled detector, has a sensor array of 640×480 pixels. The visible ray system has 1,945×1,097 pixels. The coaxial dual optical system was designed using a hot mirror beam splitter to minimize heat transfer caused by infrared rays in the visible ray optical system. The optimization process revealed that the final version of the dual camera system reached more than 90% of the fusion performance between two separate images from dual systems. Multiple rigorous testing processes confirmed that the coaxial dual camera we designed demonstrates meaningful design efficiency and improved image conformity degree compared to existing dual cameras.

키워드

과제정보

중소벤처기업부에서 지원하는 2021년도 산학협력 거점형플랫폼(R&D) (No. S3035590) 연구수행.

참고문헌

  1. S.-M. Hong and H.-S. Kim, "Advanced LWIR thermal imaging system with a large zoom optics," Korean J. Opt. Photonics 16, 354-360 (2005). https://doi.org/10.3807/KJOP.2005.16.4.354
  2. S. M. Hong, I. S. Song, W. K. Kwon, and J. K. Kim, "The basic principles and technical trends of thermal imaging systems," Proc. KIEE Conf. 1992.07b, 1255-1259 (1992).
  3. P. Kumar, A. Mittal, and P. Kumar, "Fusion of thermal infrared and visible spectrum video for robust surveillance," in Proc. Computer Vision, Graphics and Image Processing (Springer2006), pp. 528-539.
  4. T. Mouats and N. Aouf, "Fusion of thermal and visible images for day/night moving objects detection," in Proc. Sensor Signal Processing for Defence (Edinburgh, UK, Sep. 8-9, 2014), pp. 1-5.
  5. B. White, N. Robinson, and Y. H. Choo, "Video surveillance apparatus using dual camera and method thereof," U.S. Patent US20120242809A1 (2012).
  6. T. Takahata, "Coaxiality evaluation of coaxial imaging system with concentric silicon-glass hybrid lens for thermal and color imaging," Sensors 20, 5753 (2020).
  7. Mustofa, Z. Djafar, Syafaruddin, and W. H. Piarah, "A new hybrid of photovoltaic-thermoelectric generator with hot mirror as spectrum splitter," J. Phys. Sci. 29, 63-75 (2018).
  8. Z. Djafar, A. Z. Salsabila, and W. H. Piarah, "Performance comparison between hot mirror and cold mirror as a beam splitter on photovoltaic-thermoelectric generator hybrid using labview simulator," Int. J. Heat Technol. 39, 1609-1617 (2021). https://doi.org/10.18280/ijht.390524
  9. S. C. Lim and D. Y. Kim, "Calibration method for multimodal dual camera environment," J. Korea Inst. Inf. Commun. Eng. 19, 2138-2144 (2015). https://doi.org/10.6109/jkiice.2015.19.9.2138
  10. P. L. Richards, "Bolometers for infrared and millimeter waves," J. Appl. Phys. 76, 1-24 (1994). https://doi.org/10.1063/1.357128
  11. E. H. Putley, "Thermal detectors," in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer Berlin, Germany, 2005), Chapter 3, pp. 71-100.
  12. G. Hyseni, N. Caka, and K. Hyseni, "Infrared thermal detectors parameters: Semiconductor bolometers versus pyroelectrics," WSEAS Trans. Circuits Syst. 9, 238-247 (2010).
  13. C. M. Ok, H. J. Lee, and H. G. Kim, "Optimization of a middle wavelength infrared optical system with double magnification," in Proc. Optical Society of Korea Summer Annual Meeting (Sokcho, Korea, Jul. 10-11, 2008), pp. 397-398.
  14. R. S. Balcerak, "Uncooled IR imaging: Technology for the next generation," Proc. SPIE 3698, 110-118 (1999).
  15. A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," Proc. SPIE 2902, 62-73 (1997).
  16. B.-I. Ahn, Y.-S. Kim, and S.-C. Park, "Athermal and achromatic design for a night vision camera using tolerable housing boundary on an expanded athermal glass map," Curr. Opt. Photonics 1, 125-131 (2017). https://doi.org/10.3807/COPP.2017.1.2.125
  17. S.-H. Ahn and M.-C. Kim, "Image quality evaluation for the railway abrasion measurement with a high resolution," J. Korean Soc. Railw. 12, 887-894 (2009).
  18. O. Gravrand, N. Baier, A. Ferron, F. Rochette, J. Berthoz, L. Rubaldo, and R. Cluzel, "MTF issues in small-pixel-pitch planar quantum IR detectors," J. Electron. Mater. 43, 3025-3032 (2014). https://doi.org/10.1007/s11664-014-3185-3
  19. H.-S. Kim, S.-C. Choi, C.-W. Lee, Y.-C. Park, and H.-K. Kim, "Analysis and test of athermalizaion for 20:1 zoom thermal imaging system," Korean J. Opt. Photonics 12, 281-288 (2001).
  20. R. E. Fischer, "Lens design for the infrared," Proc. SPIE 10260, 1026003 (1991).